Bài 66 trang 132 Sách bài tập Hình học lớp 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Trong không gian tọa độ Oxyz cho hai đường thẳng \(\Delta \) và \(\Delta '\),trong đó \(\Delta \) là giao tuyến của hai mặt phẳng :

\(\left( \alpha  \right):2x + y + 1 = 0\) và \(\left( \beta  \right):x - y + z - 1 = 0.\)

\(\Delta '\) là giao tuyến của hai mặt phẳng :

\(\left( {\alpha '} \right):3x + y - z + 3 = 0\) và \(\left( {\beta '} \right):2x - y + 1 = 0.\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Chứng minh \(\Delta \) và \(\Delta '\) cắt nhau.

Lời giải chi tiết:

Giải hệ gồm phương trình các mặt phẳng xác định \(\Delta \) và \(\Delta '\), ta có một nghiệm duy nhất.

        \(\left\{ \matrix{  x =  - {1 \over 2} \hfill \cr  y = 0 \hfill \cr  z = {3 \over 2}. \hfill \cr}  \right.\)

Vậy \(\Delta \) và \(\Delta '\) cắt nhau tại điểm \(I\left( { - {1 \over 2};0;{3 \over 2}} \right)\).

LG b

Viết phương trình chính tắc của các đường phân giác của các góc tạo bởi \(\Delta \) và \(\Delta '\).

Lời giải chi tiết:

Ta chọn một điểm thuộc \(\Delta \), có thể lấy \(A = \left( {0; - 1;0} \right) \in \Delta .\)

Chọn một điểm thuộc \(\Delta '\), có thể lấy \(B = \left( {0;1;4} \right) \in \Delta '.\)

Khi đó, vectơ chỉ phương đơn vị của \(\Delta \) là \(\overrightarrow e  = {{\overrightarrow {IA} } \over {\left| {\overrightarrow {IA} } \right|}}\).

vectơ chỉ phương đơn vị của \(\Delta '\) là \(\overrightarrow e  = {{\overrightarrow {IB} } \over {\left| {\overrightarrow {IB} } \right|}}\).

Suy ra         \(\overrightarrow {{e_1}}  = \left( {{1 \over {\sqrt {14} }};{{ - 2} \over {\sqrt {14} }};{{ - 3} \over {\sqrt {14} }}} \right)\)

                   \(\overrightarrow {{e_2}}  = \left( {{1 \over {\sqrt {30} }};{2 \over {\sqrt {30} }};{5 \over {\sqrt {30} }}} \right)\)

Ta có \(\overrightarrow {{e_1}}  + \overrightarrow {{e_2}} \),\(\overrightarrow {{e_1}}  - \overrightarrow {{e_2}} \) là các vectơ chỉ phương của cặp đường phân giác của các góc tạo bởi \(\Delta \) và \(\Delta '\).

Vậy phương trình chính tắc của cặp đường phân giác là :

     \(\eqalign{  & \;\;\;\;\;{{x + {1 \over 2}} \over {{1 \over {\sqrt {14} }} + {1 \over {\sqrt {30} }}}} = {y \over {{{ - 2} \over {\sqrt {14} }} + {2 \over {\sqrt {30} }}}} = {{z - {3 \over 2}} \over {{{ - 3} \over {\sqrt {14} }} + {5 \over {\sqrt {30} }}}}  \cr  &\text{và}\cr& \;\;\;\;\;{{x + {1 \over 2}} \over {{1 \over {\sqrt {14} }} - {1 \over {\sqrt {30} }}}} = {y \over {{{ - 2} \over {\sqrt {14} }} - {2 \over {\sqrt {30} }}}} = {{z - {3 \over 2}} \over {{{ - 3} \over {\sqrt {14} }} - {5 \over {\sqrt {30} }}}} \cr} \)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey

Chatbot GPT

timi-livechat
Đặt câu hỏi