Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Chứng minh rằng nếu n đường thẳng \(\left( {n \ge 3} \right)\) đôi một cắt nhau và không đồng phẳng thì chúng đồng quy.
Lời giải chi tiết
Ta nhận thấy rằng: Nếu ba đường thẳng bất kì trong n đường thẳng \(\left( {n \ge 3} \right)\) đã cho đồng quy thì n đường thẳng đó đồng quy. Còn nếu tồn tại ba đường thẳng không đồng quy mà từng đôi một cắt nhau tại ba điểm A, B, C rõ ràng A, B, C không thẳng hàng. Khi đó các đường thẳng còn lại đều cắt ba đường thẳng nói trên nên chúng đều thuộc mp(ABC) (trái với giả thiết). Vậy ta chỉ cần chứng minh cho trường hợp n = 3.
Giả sử ba đường thẳng đã cho là a, b và c; A, B, C lần lượt là giao điểm của các cặp đường thẳng b và c, c và a, a và b. Nếu các điểm A, B, C phân biệt từng cặp thì dễ thấy a, b, c đều thuộc mp(ABC) (trái với giả thiết. Vậy các điểm A, B, C phải trùng nhau. Do đó ba đường thẳng a, b, c đồng quy.
Chủ đề 6. Lịch sử bảo vệ chủ quyền, các quyền và lợi ích hợp pháp của Việt Nam ở biển Đông
Cumulative Review
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Sinh học lớp 11
Test Yourself 4
Chủ đề 7: Chiến thuật thi đấu đơn
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11