Bài 68 trang 63 SBT Hình học 11 nâng cao.

Đề bài

Chứng minh rằng nếu n đường thẳng \(\left( {n \ge 3} \right)\) đôi một cắt nhau và không đồng phẳng thì chúng đồng quy.

Lời giải chi tiết

Ta nhận thấy rằng: Nếu ba đường thẳng bất kì trong n đường thẳng \(\left( {n \ge 3} \right)\)   đã cho đồng quy thì n đường thẳng đó đồng quy. Còn nếu tồn tại ba đường thẳng không đồng quy mà từng đôi một cắt nhau tại ba điểm A, B, C rõ ràng A, B, C không thẳng hàng. Khi đó các đường thẳng còn lại đều cắt ba đường thẳng nói trên nên chúng đều thuộc mp(ABC) (trái với giả thiết). Vậy ta chỉ cần chứng minh cho trường hợp n = 3.

Giả sử ba đường thẳng đã cho là a, b và c; A, B, C lần lượt là giao điểm của các cặp đường thẳng b và c, c và a, a và b. Nếu các điểm A, B, C phân biệt từng cặp thì dễ thấy a, b, c đều thuộc mp(ABC) (trái với giả thiết. Vậy các điểm A, B, C phải trùng nhau. Do đó ba đường thẳng a, b, c đồng quy.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved