Bài 7 trang 10

Đề bài

Chứng minh rằng với mọi số thực m ta luôn có \(9{m^2} + 2m >  - 3\)

Phương pháp giải - Xem chi tiết

Bước 1: Chuyển bất phương trình tương đương với \(f\left( x \right) = 9{m^2} + 2m + 3 > 0\)

Bước 2: Tính \(\Delta \) và chỉ ra dấu của \(\Delta \)âm

Bước 3: Áp dụng tính chất của tam thức bậc hai

Lời giải chi tiết

Yêu cầu bài toán tương đương chứng minh \(f\left( x \right) = 9{m^2} + 2m + 3 > 0\) với mọi m

Tam thức có \(\Delta  = {2^2} - 4.9.3 =  - 104 < 0\)

Áp dụng định lí về dấu của tam thức bậc hai ta có

\(\Delta  < 0\) và \(a = 9 > 0\) nên \(f\left( x \right)\) cùng dấu với a với mọi m

Vậy \(f\left( x \right) = 9{m^2} + 2m + 3 > 0\) với mọi m \( \Leftrightarrow 9{m^2} + 2m >  - 3\)với mọi m.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved