Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Trên mặt phẳng tọa độ (h.10), có một điểm \(M\) thuộc đồ thị của hàm số \(y = a{x^2}\).
Hình 10
a) Tìm hệ số \(a\)
b) Điểm \(A(4; 4)\) có thuộc đồ thị không ?
c) Hãy tìm thêm hai điểm nữa (không kể điểm O) để vẽ đồ thị.
Phương pháp giải - Xem chi tiết
a) Điểm \(A(x_0; y_0)\) thuộc đồ thị hàm số. Thay \(x=x_0,\ y=y_0\) vào công thức hàm số \(y=ax^2\) ta tìm được \(a\).
b) Thay tọa độ điểm \(B(x_B; y_B)\) vào công thức hàm số \(y=ax^2\). Nếu ta được một đẳng thức đúng thì \(B\) thuộc đồ thị hàm số \(y=ax^2\).
c) Điểm \(A(x_0; y_0)\) có điểm đối xứng qua trục \(Oy\) là: \(A'(-x_0; y_0)\).
Lời giải chi tiết
a) Vì \(M(2;1)\) thuộc hàm số \(y=ax^2\), thay \(x=2,\ y=1\) vào công thức hàm số, ta có:
\(1=a.2^2 \Leftrightarrow 1=a.4 \Leftrightarrow a=\dfrac{1}{4}\)
Khi đó , hàm số đã cho có dạng là: \(y=\dfrac{1}{4}x^2\) (1).
b) Thay \(x=4,\ y=4\) vào công thức hàm số (1), ta được:
\(4=\dfrac{1}{4}.4^2 \) \(\Leftrightarrow 4=4\) (luôn đúng)
Vậy điểm \(A(4; 4)\) thuộc đồ thị hàm số \(y = \dfrac{1}{4}{x^2}\).
c) Ta có điểm \(A'(-4;4)\) đối xứng với điểm \(A(4; 4)\) qua trục tung
Điểm \(M'(-2; 1)\) đối xứng với điểm \(M(2; 1)\) qua trục tung
Vì đồ thị hàm số \(y=\dfrac{1}{4}x^2\) là đường cong đi qua gốc tọa độ, nhận trục \(Oy\) làm trục đối xứng nên \(A',\ M'\) cũng thuộc đồ thị.
Vẽ đồ thị:
Bài 17: Nghĩa vụ bảo vệ tổ quốc
PHẦN MỘT: LỊCH SỬ THẾ GIỚI HIỆN ĐẠI TỪ NĂM 1945 ĐẾN NAY
Văn tự sự
CHƯƠNG 5. DẪN XUẤT CỦA HIDROCACBON - POLIME
Bài 21