SGK Toán 11 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 7.11 - Mục Bài tập trang 42

1. Nội dung câu hỏi

Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA \( \bot \) (ABCD) và \(SA = a\sqrt 2 .\)

a) Tính góc giữa SC và mặt phẳng (ABCD).

b) Tính góc giữa BD và mặt phẳng (SAC).

c) Tìm hình chiếu của SB trên mặt phẳng (SAC).


2. Phương pháp giải

- Góc giữa đường thẳng a với mặt phẳng (P) là góc giữa a và hình chiếu a’ của nó trên (P).

- Xác định hình chiếu tại 1 điểm

 

3. Lời giải chi tiết

a) A là hình chiếu của S trên (ABCD) \(\left( {SA \bot \left( {ABCD} \right)} \right)\)

C là hình chiếu của C trên (ABCD)

\( \Rightarrow \) AC là hình chiếu của SC trên (ABCD)

\( \Rightarrow \) \(\left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\)

Xét tam giác ABC vuông tại B có

\(A{C^2} = A{B^2} + B{C^2} = 2{a^2} \Rightarrow AC = a\sqrt 2 \)

Xét tam giác SAC vuông tại A có

\(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{a\sqrt 2 }}{{a\sqrt 2 }} = 1 \Rightarrow \widehat {SCA} = {45^0}\)

Vậy \(\left( {SC,\left( {ABCD} \right)} \right) = {45^0}\).

b) \(\left. \begin{array}{l}AC \bot BD\left( {hv\,\,ABCD} \right)\\SA \bot BD\left( {SA \bot \left( {ABCD} \right)} \right)\\AC \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BD \bot \left( {SAC} \right) \Rightarrow \left( {BD,\left( {SAC} \right)} \right) = {90^0}\)

c) Gọi \(AC \cap BD = \left\{ O \right\}\) mà \(BD \bot \left( {SAC} \right)\)

\( \Rightarrow \) O là hình chiếu của B trên (SAC)

S là hình chiếu của S trên (SAC)

\( \Rightarrow \) SO là hình chiếu của SB trên (SAC).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved