Bài 72 trang 134 Sách bài tập Hình học lớp 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Tìm tọa độ hình chiếu ( vuông góc ) của điểm \({M_0}(1; - 1;2)\) trên mặt phẳng

\(\left( \alpha  \right):2x - y + 2z + 12 = 0.\)

Lời giải chi tiết:

Phương trình của đường thẳng đi qua điểm M0(1 ; -1 ; 2) và vuông góc với mặt phẳng (\(\alpha \)) là :

             \(\left\{ \matrix{  x = 1 + 2t \hfill \cr  y =  - 1 - t \hfill \cr  z = 2 + 2t. \hfill \cr}  \right.\)

Gọi M'0(x ; y ; z) là hình chiếu của M0 trên mp(\(\alpha \)). Toạ độ của M'0 thoả mãn hệ :

    \(\left\{ \matrix{  x = 1 + 2t \hfill \cr  y =  - 1 - 2t \hfill \cr  z = 2 + 2t \hfill \cr  2x - y + 2z + 12 = 0 \hfill \cr}  \right. \Rightarrow t =  - {{19} \over 9}.\) 

Vậy  \(M{'_0} = \left( { - {{29} \over 9};{{10} \over 9}; - {{20} \over 9}} \right).\)

LG b

Cho bốn điểm A(4;1;4), B(3;3;1), C(1;5;5), D(1;1;1). Tìm tọa độ hình chiếu của D trêm mặt phẳng (ABC).

Lời giải chi tiết:

\(\overrightarrow {AB} \) = (-1 ; 2 ; -3), \(\overrightarrow {AC} \) = (-3 ; 4 ; 1)

\(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\)= (14 ; 10 ; 2).

Lấy một vectơ pháp tuyến của mp(ABC) là \(\overrightarrow n \)= (7 ; 5 ; 1), ta có phương trình của mặt phẳng (ABC):

            7x + 5y + z - 37 = 0. 

Đường thẳng đi qua D và vuông góc với mp(ABC) có phương trình :

              \(\left\{ \matrix{  x = 1 + 7t \hfill \cr  y = 1 + 5t \hfill \cr  z = 1 + t. \hfill \cr}  \right.\)

Toạ độ hình chiếu D’ của D trên mp(ABC) thoả mãn hệ

              \(\left\{ \matrix{  x = 1 + 7t \hfill \cr  y = 1 + 5t \hfill \cr  z = 1 + t \hfill \cr  7x + 5y + z - 37 = 0. \hfill \cr}  \right.\)

Suy ra D’ = \(\left( {{{81} \over {25}};{{13} \over 5};{{13} \over {25}}} \right).\)

LG c

Cho ba điểm A(1;1;2), B(-2;1;-1), C(2;-2;-1). Tìm tọa độ hình chiếu của gốc O trên mặt mp(ABC).

Lời giải chi tiết:

Tương tự ta có hình chiếu của O trên (ABC) là:

\(\left( {{3 \over {34}};{2 \over {17}}; - {3 \over {34}}} \right).\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved