PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1

Bài 77 trang 33 sgk toán 8 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
Câu 2

Tính nhanh giá trị của biểu thức:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
Câu 2

LG a.

LG a.

\(M = {x^2} + 4{y^2} - 4xy\)  tại \(x = 18\) và \(y = 4\).

Phương pháp giải:

Biến đổi để đưa \( M\) về dạng hằng đẳng thức. Sau đó thay giá trị của \(x;y\) vào để tính giá trị của biểu thức \(M\).

Sử dụng: \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

Lời giải chi tiết:

\(M = {x^2} + 4{y^2} - 4xy\)

\( = {x^2} - 4xy + 4{y^2}\)

\(= {x^2} - 2.x.2y + {\left( {2y} \right)^2}\)

\(= {\left( {x - 2y} \right)^2}\)

Thay \(x = 18, y = 4\) ta được:

\(M = {\left( {18 - 2.4} \right)^2} = {\left( {10} \right)^2} = 100\)

Câu 2

Câu 2

\(N = 8{x^3} - 12{x^2}y + 6x{y^2} - {y^3}\)  tại \(x = 6\) và \(y =- 8\).

Phương pháp giải:

Biến đổi để đưa \( N\) về dạng hằng đẳng thức. Sau đó thay giá trị của \(x;y\) vào để tính giá trị của biểu thức \(N\).

Sử dụng: \({\left( {A - B} \right)^3} = {A^3} - 3{A^2}B + 3A{B^2} - {B^3}\)

Lời giải chi tiết:

\(N = 8{x^3} - 12{x^2}y + 6x{y^2} - {y^3}\)

\(= {\left( {2x} \right)^3} - 3.{\left( {2x} \right)^2}.y + 3.2x.{y^2} - {y^3}\)

\(= {\left( {2x - y} \right)^3}\)

Thay \(x = 6, y = - 8\) ta được:

\(N = {\left[ {2.6 - \left( { - 8} \right)} \right]^3} = {20^3} = 8000\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved