Bài 79 trang 135 Sách bài tập Hình học lớp 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng (ABCD) và SA=2a. Gọi M, N lần lượt là trung điểm của các cạnh SA, SD.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Tính khoảng cách từ đỉnh A tới mặt phẳng (BCM) và khoảng cách giữa hai đường thẳng SB, CN.

Lời giải chi tiết:

 Chọn hệ trục Oxyz sao cho gốc O là điểm A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa SA (h. 104).

Khi đó

\(\eqalign{  & A = \left( {0;0;0} \right),B = \left( {a;0;0} \right),  \cr  & C = \left( {a;a;0} \right),D = \left( {0;a;0} \right),  \cr  & S = \left( {0;0;2a} \right),M\left( {0;0;a} \right),  \cr  & N = \left( {0;{a \over 2};a} \right). \cr} \)

\(\overrightarrow {BC}  = \left( {0;a;0} \right),\)

\(\overrightarrow {BM}  = \left( { - a;0;a} \right)\)

\( \Rightarrow \left[ {\overrightarrow {BC} ,\overrightarrow {BM} } \right] = \left( {\left| {\matrix{   a & 0  \cr   0 & a  \cr  } } \right|;\left| {\matrix{   0 & 0  \cr   a & { - a}  \cr  } } \right|;\left| {\matrix{   0 & a  \cr   { - a} & 0  \cr  } } \right|} \right)\)

                             \(= \left( {{a^2};0;{a^2}} \right).\)

Do đó, mặt phẳng (BCM) có vectơ pháp tuyến là (1; 0; 1), suy ra phương trình mặt phẳng (BCM) là:

\(1\left( {x - a} \right) + 1\left( {z - 0} \right) = 0 \Leftrightarrow x + z -a= 0.\)

Vậy khoảng cách từ A đến mp(BCM)

        \(d\left( {A,\left( {BCM} \right)} \right) = {{\left| { - a} \right|} \over {\sqrt {{1^2} + {1^2}} }} = {a \over {\sqrt 2 }}.\)

Ta lại có: \(\overrightarrow {BS}  = \left( { - a;0;2a} \right),\overrightarrow {CN}  = \left( { - a; - {a \over 2};a} \right),\)

\(\overrightarrow {SC}  = \left( {a;a; - 2a} \right).\)

Suy ra

\(\left[ {\overrightarrow {BS} ,\overrightarrow {CN} } \right] \)

\(= \left( {\left| {\matrix{   0 & {2a}  \cr   { - {a \over 2}} & a  \cr  } } \right|;\left| {\matrix{   {2a} & { - a}  \cr   a & { - a}  \cr  } } \right|;\left| {\matrix{   { - a} & 0  \cr   { - a} & { - {a \over 2}}  \cr  } } \right|} \right) \)

\(= \left( {{a^2}; - {a^2};{{{a^2}} \over 2}} \right)\)

\( \Rightarrow \left[ {\overrightarrow {BS} ,\overrightarrow {CN} } \right].\overrightarrow {SC}  = {a^3} - {a^3} - {a^3} =  - {a^3}.\)

Vậy khoảng cách giữa hai đường thẳng SB và CN là

\(d\left( {SB,CN} \right) = {{\left| {\left[ {\overrightarrow {BS} ,\overrightarrow {CN} } \right].\overrightarrow {CN} } \right|} \over {\left| {\left[ {\overrightarrow {BS} ,\overrightarrow {CN} } \right]} \right|}} \)

                       \(= {{\left| { - {a^3}} \right|} \over {\sqrt {{a^4} + {a^4} + {{{a^4}} \over 4}} }} = {{{a^3}} \over {{{3{a^2}} \over 2}}} = {{2a} \over 3}.\)

LG b

Tính cosin của góc giữa hai mặt phẳng (SCD) và (SBC).

Lời giải chi tiết:

Vì \(\left[ {\overrightarrow {SC} ,\overrightarrow {SD} } \right] = \left( {0;2{a^2};{a^2}} \right)\) nên mp(SCD) có vectơ pháp tuyến \(\overrightarrow n  = \left( {0;2;1} \right).\)

Vì \(\left[ {\overrightarrow {SB} ,\overrightarrow {SC} } \right] = \left( {2{a^2};0;{a^2}} \right)\) nên mp(SBC) có vectơ pháp tuyến \(\overrightarrow {n'}  = \left( {2;0;1} \right).\)

Gọi \(\varphi \) là góc giữa hai mặt phẳng (SCD) và (SBC), ta có

        \(\cos \varphi  = {{\left| {\overrightarrow n .\overrightarrow {n'} } \right|} \over {\left| {\overrightarrow n } \right|\left| {\overrightarrow {n'} } \right|}} = {{\left| { - 1} \right|} \over {\sqrt 5 .\sqrt 5 }} = {1 \over 5}.\)

LG c

Tính tỉ số thể tích giữa hai phần của hình chóp S.ABCD chia bởi mặt phẳng (BCM).

Lời giải chi tiết:

\({V_{S.ABCD}} = {1 \over 3}{a^2}.2a = {2 \over 3}{a^3}.\)

Vì M là trung điểm của SA suy ra \(d\left( {S,\left( {BCM} \right)} \right) = d\left( {A,\left( {BCM} \right)} \right) = {a \over {\sqrt 2 }}.\)

Hình chóp S.ABCD bị mp(BCM) chia làm 2 phần, trong đó có một phần là hình chóp S.BCNM. Hình chóp này có đường cao bằng \(d\left( {S,\left( {BCM} \right)} \right) = {a \over {\sqrt 2 }}\) và đáy là hình thang BCNM có diện tích bằng \({1 \over 2}\left( {a + {a \over 2}} \right)a\sqrt 2  = {{3\sqrt 2 {a^2}} \over 4}.\)

Suy ra: \({V_{S.BCNM}} = {1 \over 3}.{{3\sqrt 2 {a^2}} \over 4}.{a \over {\sqrt 2 }} = {{{a^3}} \over 4}.\)

Vậy tỉ số thể tích giữa hai phần của hình chóp S.ABCD chia bởi mp(BCM) là: \({{{{{a^3}} \over 4}} \over {{{2{a^3}} \over 3} - {{{a^3}} \over 4}}} = {3 \over 5}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved