Đề bài
Tìm giá trị của m để:
a) \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\);
b) \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\)
Phương pháp giải - Xem chi tiết
a) Bước 1: Tính \(\Delta \) và xác định dấu của a
Bước 2: \(f\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\) khi \(a > 0\) và \(\Delta < 0\)
b) Bước 1: Tính \(\Delta \) và xác định dấu của a
Bước 2: \(f\left( x \right) \le 0\) với mọi \(x \in \mathbb{R}\) khi \(a < 0\) và \(\Delta \le 0\)
Lời giải chi tiết
a) Tam thức \(2{x^2} + 3x + m + 1\) có \(\Delta = {3^2} - 4.2.\left( {m + 1} \right) = 1 - 8m\)
Vì \(a = 2 > 0\) nên để \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(\Delta < 0 \Leftrightarrow 1 - 8m < 0 \Leftrightarrow m > \frac{1}{8}\)
Vậy khi \(m > \frac{1}{8}\) thì \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\)
b) Tam thức \(m{x^2} + 5x - 3\) có \(\Delta = {5^2} - 4.m.\left( { - 3} \right) = 25 + 12m\)
Đề \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m < 0\) và \(\Delta = 25 + 12m \le 0 \Leftrightarrow m \le - \frac{{25}}{{12}}\)
Vậy \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi \(m \le - \frac{{25}}{{12}}\)
Chủ đề 4. Các cuộc cách mạng công nghiệp trong lịch sử thế giới
Chuyên đề 2: Hóa học trong việc phòng chống cháy nổên đề 1: Cơ sở hóa học
Chuyên đề 1. Tập nghiên cứu và viết báo cáo về một vấn đề văn học dân gian
Đề thi học kì 2
Bài 9. Đội ngũ từng người không có súng
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Kết nối tri thức Lớp 10