PHẦN ĐẠI SỐ - TOÁN 8 TẬP 2

Bài 8 trang 10 sgk toán 8 tập 2

Đề bài

Giải các phương trình:

a) \(4x - 20 = 0\);

b) \(2x + x + 12 = 0\);

c) \(x - 5 = 3 - x\);

d) \(7 - 3x = 9 - x\).

Phương pháp giải - Xem chi tiết

a) Phương trình \(ax+b=0\) (với \(a\ne0\)) được giải như sau:

\(ax + b = 0 \Leftrightarrow  ax = -b  \Leftrightarrow  x = \dfrac{-b}{a}\)

Vậy phương trình có một nghiệm duy nhất là \(x=   \dfrac{-b}{a} \)

b, c, d) 

+) Quy tắc chuyển vế

Trong một phương trình ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.

+) Quy tắc nhân với một số

Trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế phương trình với cùng một số khác \(0\).

Lời giải chi tiết

a) \(4x - 20 = 0 \)

\(\Leftrightarrow  4x = 20  \)

\( \Leftrightarrow x = \dfrac{20} {4}\)

\(\Leftrightarrow  x = 5\)

Vậy phương trình có nghiệm duy nhất \(x = 5\).

b) \(2x + x + 12 = 0\)

\( \Leftrightarrow  3x + 12 = 0\)

\( \Leftrightarrow 3x = -12\)

\( \Leftrightarrow x = \dfrac{{ - 12}}{3}\)

\( \Leftrightarrow x = - 4\)

Vậy phương trình đã cho có nghiệm duy nhất \(x = - 4\)

c) \(x - 5 = 3 - x\)

\( \Leftrightarrow  x + x = 3+5\)

\( \Leftrightarrow  2x = 8 \)

\( \Leftrightarrow x = \dfrac{8}{2}\)

\( \Leftrightarrow  x = 4\)

Vậy phương trình có nghiệm duy nhất \(x = 4\)

d) \(7 - 3x = 9 - x\)

\( \Leftrightarrow  -3x+x = 9 -7\)

\( \Leftrightarrow  -2x = 2\)

\( \Leftrightarrow x = \dfrac{2}{{ - 2}}\)

\( \Leftrightarrow  x = -1\)

Vậy phương trình có nghiệm duy nhất \(x = -1\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved