Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Đề bài
Cho góc nhọn \(xAy\) và hai điểm \(B,\ C\) thuộc \(Ax\). Dựng đường tròn \((O)\) đi qua \(B\) và \(C\) sao cho tâm \(O\) nằm trên tia \(Ay\).
Phương pháp giải - Xem chi tiết
Bước 1. Phân tích:
Giả sử đã dựng được đường tròn \((O)\) thỏa mãn đề bài.
- Vì \(O\) đi qua \(B,\ C\) nên \(OB=OC\) do đó \(O\) nằm trên đường trung trực \(m\) của \(BC\).
- \(O\) nằm trên tia \(Ay\).
Bước 2. Dựng hình: Dựa vào bước phân tích trên liệt kê thứ tự các phép dựng hình cơ bản.
Bước 3. Chứng minh: Bằng lí luận, chứng minh hình vừa dựng thỏa mãn tất cả các giả thiết của bài toán.
Bước 4. Biện luận: thiết lập điều kiện giải được của bài toán. Tức là xét xem bài toán giải được trong trường hợp nào và có bao nhiêu nghiệm.
Lời giải chi tiết
Cách dựng:
- Dựng đường trung trực \(m\) của đoạn thẳng \(BC\), \(m\) cắt tia \(Ay\) tại \(O\).
- Dựng đường tròn \((O;\ OB)\), đó là đường tròn phải dựng.
Chứng minh
Vì điểm \(O\in \) đường trung trực \(m\) của \(BC\) nên \(OB=OC\) (tính chất), suy ra đường tròn \((O;\ OB)\) đi qua \(B\) và \(C\).
Mặt khác, \(O\in Ay\) nên đường tròn \((O)\) thỏa mãn đề bài.
Biện luận
Vì \(m\) luôn cắt tia \(Ay\) tại một điểm \(O\) duy nhất nên bài toán luôn có một hình thỏa mãn.
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Vật lí lớp 9
Chương 5. Dẫn xuất của hiđrocacbon. Polime
Đề thi vào 10 môn Văn Lào Cai
Bài 16
Bài 1: Chí công vô tư