Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Cho điểm \(S\) không thuộc cùng mặt phẳng \((α)\) có hình chiếu là điểm \(H\). Với điểm \(M\) bất kì trên \((α)\) và \(M\) không trùng với \(H\), ta gọi \(SM\) là đường xiên và đoạn \(HM\) là hình chiếu của đường xiên đó. Chứng minh rằng:
a) Hai đường thẳng xiên bằng nhau khi và chỉ khi hai hình chiếu của chúng bằng nhau;
b) Với hai đường xiên cho trước, đường xiên nào lớn hơn thì có hình chiếu lớn hơn và ngược lại đường xiên nào có hình chiếu lớn hơn thì lớn hơn.
Phương pháp giải - Xem chi tiết
a) Chứng minh các tam giác vuông bằng nhau.
b) Sử dụng định lí Pytago.
Lời giải chi tiết
a) Gọi \(SN\) là một đường xiên khác.
\(SH \bot \left( \alpha \right) \Rightarrow \left\{ \begin{array}{l}
SH \bot HM\\
SH \bot HN
\end{array} \right.\)
\( \Rightarrow \Delta SHM,\Delta SHN\) vuông tại \(H\).
Xét hai tam giác vuông \(SHM\) và \(SHN\) có \(SH\) cạnh chung.
Nếu \(SM = SN \Rightarrow ∆SHM = ∆SHN \) (cạnh huyền - cạnh góc vuông)
\(\Rightarrow HM = HN\).
Ngược lại nếu \(HM = HN\) thì \(∆SHM = ∆SHN \) (hai cạnh góc vuông)
\(\Rightarrow SM = SN\).
b) Xét tam giác vuông \(SHM\) và \(SHN\) có \(SH\) cạnh chung.
Giả sử \(SN > SM\)
Áp dụng định lí Pytago vào hai tam giác vuông \(SHM\) và \(SHN\) ta được:
\(\left\{ \begin{array}{l}H{N^2} = S{N^2} - S{H^2}\\H{M^2} = S{M^2} - S{H^2}\end{array} \right. \Rightarrow HN > HM\)
Phần đảo chứng minh tương tự
\(\left\{ \begin{array}{l}S{N^2} = H{N^2} + S{H^2}\\S{M^2} = H{M^2} + S{H^2}\end{array} \right. \Rightarrow SN > SM\)
Chủ đề 3. Công nghệ thức ăn chăn nuôi
Bài 11: Tiết 4: Thực hành: Tìm hiểu về hoạt động kinh tế đối ngoại của Đông Nam Á - Tập bản đồ Địa lí 11
Đề cương ôn tập học kì 2
SGK Toán 11 - Cánh Diều tập 2
Chương 6. Hidrocacbon không no
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11