Bài 8 trang 105 sgk Hình học 11

Đề bài

Cho điểm \(S\) không thuộc cùng mặt phẳng \((α)\) có hình chiếu là điểm \(H\). Với điểm \(M\) bất kì trên \((α)\) và \(M\) không trùng với \(H\), ta gọi \(SM\) là đường xiên và đoạn \(HM\) là hình chiếu của đường xiên đó. Chứng minh rằng:

a) Hai đường thẳng xiên bằng nhau khi và chỉ khi hai hình chiếu của chúng bằng nhau;

b) Với hai đường xiên cho trước, đường xiên nào lớn hơn thì có hình chiếu lớn hơn và ngược lại đường xiên nào có hình chiếu lớn hơn thì lớn hơn.

Phương pháp giải - Xem chi tiết

a) Chứng minh các tam giác vuông bằng nhau.

b) Sử dụng định lí Pytago.

Lời giải chi tiết

a) Gọi \(SN\) là một đường xiên khác.

\(SH \bot \left( \alpha \right) \Rightarrow \left\{ \begin{array}{l}
SH \bot HM\\
SH \bot HN
\end{array} \right.\)

\( \Rightarrow \Delta SHM,\Delta SHN\) vuông tại \(H\).

Xét hai tam giác vuông \(SHM\) và \(SHN\) có \(SH\) cạnh chung.

Nếu \(SM = SN \Rightarrow ∆SHM = ∆SHN \) (cạnh huyền - cạnh góc vuông)

\(\Rightarrow  HM = HN\).

Ngược lại nếu \(HM = HN\) thì  \(∆SHM = ∆SHN \) (hai cạnh góc vuông)

\(\Rightarrow  SM = SN\).

b) Xét tam giác vuông \(SHM\) và \(SHN\) có \(SH\) cạnh chung.

Giả sử  \(SN > SM\)

Áp dụng định lí Pytago vào hai tam giác vuông \(SHM\) và \(SHN\) ta được:

\(\left\{ \begin{array}{l}H{N^2} = S{N^2} - S{H^2}\\H{M^2} = S{M^2} - S{H^2}\end{array} \right. \Rightarrow HN > HM\)

Phần đảo chứng minh tương tự

\(\left\{ \begin{array}{l}S{N^2} = H{N^2} + S{H^2}\\S{M^2} = H{M^2} + S{H^2}\end{array} \right. \Rightarrow SN > SM\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved