Bài 8 trang 113 Tài liệu dạy – học Toán 9 tập 2

Đề bài

Cho hình chữ nhật ABCD với AB = \(2\sqrt 3 \)cm, BC = 2 cm và đường tròn ngoại tiếp (O)

a) Tính diện tích hình tròn (O)

b)Tính tổng diện tích của bốn hình viên phân

c) Tính diện tích hình viên phân BC .

Phương pháp giải - Xem chi tiết

a) Áp dụng định lí Pytago trong tam giác vuông ABC tính AC và suy ra bán kính đường tròn \(\left( O \right)\). Sử dụng công thức tính diện tích hình tròn \(S = \pi {R^2}\).

b) Tổng diện tích 4 hình viên phân bằng diện tích hình tròn trừ diện tích hình chữ nhật ABCD.

c) Diện tích hình viên phân BC bằng diện tích hình quạt OBC trừ diện tích tam giác OBC.

Sử dụng công thức tính diện tích hình quạt \(S = \dfrac{{\pi {R^2}n}}{{360}}\).

Lời giải chi tiết

 

a) Áp dụng định lí Pytago trong tam giác vuông ABC có:

\(A{C^2} = A{B^2} + B{C^2} = {\left( {2\sqrt 3 } \right)^2} + {2^2} = 16 \)

\(\Rightarrow AC = 4\).

\( \Rightarrow R = OA = OB = OC = OD = \dfrac{1}{2}AC = 2\).

Vậy diện tích hình tròn (O) là: \(S = \pi {R^2} = 4\pi  \approx 12,56\,\,\left( {c{m^2}} \right)\).

b) Ta có: \({S_{ABCD}} = AB.BC = 2\sqrt 3 .2 = 4\sqrt 3 \,\,\left( {c{m^2}} \right)\)

Vậy tổng diện tích 4 hình viên phân là \(S' = S - {S_{ABCD}} \approx 5,63\,\,\,\left( {c{m^2}} \right)\)

c) Xét tam giác OBC có \(OB = OC = BC = 2 \Rightarrow \Delta OBC\) đều \( \Rightarrow \widehat {OBC} = {60^0}\)

Suy ra diện tích hình quạt OBC là: \({S_q} = \dfrac{{\pi {R^2}n}}{{360}} = \dfrac{{\pi {{.2}^2}.60}}{{360}} = \dfrac{{2\pi }}{3}\,\,\left( {c{m^2}} \right)\)

Gọi D là trung điểm của BC \( \Rightarrow OD \bot BC\) (quan hệ vuông góc giữa đường kính và dây cung).

Xét tam giác ABC có:

O là trung điểm của AC (gt);

D là trung điểm của BC (theo cách dựng);

\( \Rightarrow OD\) là đường trung bình của tam giác ABC \( \Rightarrow OD = \dfrac{1}{2}AB = \sqrt 3 \).

Ta có: \({S_{\Delta OBC}} = \dfrac{1}{2}OD.BC = \dfrac{1}{2}.\sqrt 3 .2 = \sqrt 3 \,\,\left( {c{m^2}} \right)\)

Vậy diện tích hình viên phân BC bằng \({S_q} - {S_{\Delta OBC}} = \dfrac{{2\pi }}{3} - \sqrt 3  \approx 0,36\,\,\left( {c{m^2}} \right)\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved