Bài 8 trang 142 Tài liệu dạy – học Toán 9 tập 2

Đề bài

Cho tam giác đều ABC nội tiếp đường tròn tâm O và một điểm D di động trên cung AC. Gọi  E là giao điểm của AC và BD, gọi F là giao điểm của AD và BC. Chứng minh rằng:

a) \(\widehat {AFB} = \widehat {ABD}\)

b) Tích AE.BF không đổi.

Lời giải chi tiết

 

a) Do tam giác ABC đều \( \Rightarrow AB = AC \Rightarrow \,cung\,AB = cung\,AC\) (hai dây bằng nhau căng hai cung bằng nhau).

Vì \(\widehat {AFB}\) là góc có đỉnh ở bên ngoài đường tròn nên

\(\widehat {AFB} = \dfrac{{sd\,cung\,AB - sd\,cung\,CD}}{2} \)\(\,= \dfrac{{sd\,cung\,AC - sd\,cung\,CD}}{2} \)\(\,= \dfrac{{sd\,cung\,AD}}{2}\).

\(\widehat {ABD}\) là góc nội tiếp đường tròn \(\left( O \right)\) chắn cung AD nên \(\widehat {ABD} = \dfrac{{sd\,cung\,AD}}{2}\).

Vậy \(\widehat {AFB} = \widehat {ABD}\).

b)  Xét tam giác ABD và tam giác AFB có:

\(\widehat {BAF}\) chung;

\(\widehat {ABD} = \widehat {AFB}\,\,\left( {cmt} \right)\)

\( \Rightarrow \Delta ABD \sim \Delta AFB\,\,\left( {g.g} \right)\)

\( \Rightarrow \dfrac{{AB}}{{AF}} = \dfrac{{AD}}{{AB}} = \dfrac{{BD}}{{BF}} \)

\(\Rightarrow BF = \dfrac{{AB.BD}}{{AD}} = \dfrac{{AF.BD}}{{AB}}\)

\( \Rightarrow AE.BF = \dfrac{{AB.BD}}{{AD}}.\dfrac{{BE.AD}}{{BC}}\)\(\, = \dfrac{{AB.BD.AD}}{{BC}} = BD.AD\)

\(\begin{array}{l}\Delta BDF \sim \Delta ADC\end{array}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved