Đề bài
Cho hai điểm \(A\left( {1;3} \right),B\left( {4;2} \right)\)
a) Tìm tọa độ điểm D nằm trên trục Ox sao cho DA=DB
b) Tính chu vi tam giác OAB
c) Chứng minh rằng OA vuông góc AB và từ đó tính diện tích tam giác OAB
Lời giải chi tiết
a) Gọi tọa độ điểm D là \((x;0)\)
Ta có: \(\overrightarrow {DB} = \left( {4 - x;2} \right) \Rightarrow DB = \left| {\overrightarrow {DB} } \right| = \sqrt {{{\left( {4 - x} \right)}^2} + {2^2}} \)
\(\begin{array}{l}DA = DB \Leftrightarrow \sqrt {{{\left( {1 - x} \right)}^2} + {3^2}} = \sqrt {{{\left( {4 - x} \right)}^2} + {2^2}} \\ \Rightarrow {\left( {1 - x} \right)^2} + {3^2} = {\left( {4 - x} \right)^2} + {2^2}\\ \Rightarrow x^2 -2x+10 = x^2 -8x+ 20\\ \Rightarrow 6x = 10\\ \Rightarrow x = \frac{5}{3}\end{array}\)
Thay \(x = \frac{5}{3}\) ta thấy thảo mãn phương trình
Vậy khi \(D\left( {\frac{5}{3};0} \right)\) thì DA=DB
b) Ta có: \(\overrightarrow {OA} = \left( {1;3} \right) \Rightarrow OA = \left| {\overrightarrow {OA} } \right| = \sqrt {{1^2} + {3^2}} = \sqrt {10} \)
\(\overrightarrow {OB} = \left( {4;2} \right) \Rightarrow OB = \left| {\overrightarrow {OB} } \right| = \sqrt {{4^2} + {2^2}} = 2\sqrt 5 \)
\(\overrightarrow {AB} = \left( {3; - 1} \right) \Rightarrow AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{3^2} + {{\left( { - 1} \right)}^2}} = \sqrt {10} \)
Chu vi tam giác OAB là
\({C_{OAB}} = OA + OB + AB = \sqrt {10} + 2\sqrt 5 + \sqrt {10} = 2\sqrt {10} + 2\sqrt 5 \)
c) \(\overrightarrow {OA} .\overrightarrow {AB} = 1.3 + 3.( - 1) = 0 \Rightarrow OA \bot AB\)
Tam giác OAB vuông tại A nên diện tích của tam giác là
\({S_{OAB}} = \frac{1}{2}OA.AB = \frac{1}{2}\sqrt {10} .\sqrt {10} = 5\)
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Kết nối tri thức Lớp 10