PHẦN HÌNH HỌC - TOÁN 8 TẬP 2

Bài 8 trang 63 - Sách giáo khoa toán 8 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.

LG a.

LG a.

Để chia đoạn thẳng AB thành ba đoạn bằng nhau, người ta đã làm như hình 15.

Hãy mô tả cách làm trên và giải thích vì sao các đoạn AC, CD, DB bằng nhau?

Phương pháp giải:

Áp dụng: Hệ quả của định lý TaLet.

Lời giải chi tiết:

Mô tả cách làm:

Vẽ đoạn \(PQ\) song song với \(AB, PQ\) có độ dài bằng \(3\) đơn vị

- Trên PQ lấy lần lượt các điểm E, F sao cho \(PE=EF=FQ=1\) đơn vị 

- Xác định giao điểm \(O\) của hai đoạn thẳng \(PB\) và \(QA\).

- Vẽ các đường thẳng \(EO, FO\) cắt \(AB\) tại \(C\) và \(D\).

Chứng minh \(AC= CD = DB\)

\(∆OPE\) và \(∆OBD\) có \(PE//DB\) (theo cách vẽ) nên \(\dfrac{DB}{PE} =  \dfrac{OD}{OE}\)     (1) (hệ quả định lý TaLet)

\(∆OEF\) và \(∆ODC\) có \(EF // CD\) (theo cách vẽ) nên \(\dfrac{CD}{EF} = \dfrac{OD}{OE}=\dfrac{OC}{OF}\)    (2) (hệ quả định lý TaLet)

\(∆OFQ\) và \(∆OCA\) có \(FQ // AC\) (theo cách vẽ) nên \(\dfrac{AC}{FQ} = \dfrac{OC}{OF}\)    (3) (hệ quả định lý TaLet)

Từ (1), (2) và (3) suy ra:

\(\dfrac{DB}{PE} = \dfrac{CD}{EF}=\dfrac{AC}{FQ}\) mà \(PE = EF=FQ\) (gt) nên \(DB = CD=AC\). 

Vây: \(DB = CD = AC\).

LG b.

LG b.

Bằng cách tương tự, hãy chia đoạn thẳng AB cho trước thành 5 đoạn bằng nhau. Hỏi có cách nào khác với cách làm trên mà vẫn có thể chia đoạn AB cho trước thành 5 đoạn bằng nhau?

Phương pháp giải:

Áp dụng: Hệ quả của định lý TaLet.

Lời giải chi tiết:

Tương tự chia đoạn thẳng \(AB\) thành \(5\) đoạn bằng nhau thực hiện như hình vẽ sau:

Cách khác: Ta có thể chia đoạn thẳng \(AB\) thành \(5\) đoạn thẳng bằng nhau như cách sau:

Vẽ \(6\) đường thẳng song song cách đều nhau (có thể dùng thước kẻ để vẽ liên tiếp). Đặt đầu mút \(A\) và \(B\) ở hai đường thẳng ngoài cùng thì các đường thẳng song song cắt \(AB\) chia thành \(5\) phần bằng nhau. 

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved