CHƯƠNG I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG
CHƯƠNG I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

Bài 8 trang 87 Tài liệu dạy – học Toán 9 tập 1

Đề bài

Cho tam giác ABC vuông tại A có AB = 10 cm, AC = 15 cm.

a) Tính góc B.

b) Phân giác trong góc B cắt AC tại I. Tính AI.

c) Vẽ AH vuông góc với BI tại H. Tính AH.

Phương pháp giải - Xem chi tiết

a) Sử dụng tỉ số lượng giác tính góc B

b) Áp dụng định lý Pythagore và tính chất đường phân giác để có tổng và tỉ của IA,IC.

c) Áp dụng hệ thức lượng trong tam giác vuông.

Lời giải chi tiết

 

a) Tính góc B.

\(\tan {\widehat B} = \dfrac{{AC}}{{AB}} = \dfrac{{15}}{{10}} = \dfrac{3}{2}\)

\(\Rightarrow {\widehat B} \approx {56^0}19'\)

b) Phân giác trong góc B cắt AC tại I. Tính AI.

Áp dụng định lý Pythagore vào tam giác ABC vuông tại A:

\(A{B^2} + A{C^2} = B{C^2} \)

\(\Rightarrow BC = \sqrt {A{B^2} + A{C^2}}  \)\(\,= \sqrt {{{10}^2} + {{15}^2}}  = 5\sqrt {13} \)

AI là phân giác trong góc I nên ta có:

\(\dfrac{{IA}}{{IC}} = \dfrac{{BA}}{{BC}} = \dfrac{{10}}{{5\sqrt {13} }} = \dfrac{2}{{\sqrt {13} }} \)

\(\Rightarrow IC = \dfrac{{\sqrt {13} }}{2}IA\)

Mặt khác: \(IA + IC = AC = 15 \)

\(\Rightarrow IA + \dfrac{{\sqrt {13} }}{2}IA = 15 \)

\(\Rightarrow IA = \dfrac{{ - 20 + 10\sqrt {13} }}{3}\) cm

c) Vẽ AH vuông góc với BI tại H. Tính AH.

Áp dụng hệ thức lượng trong tam giác ABI vuông tại A, đường cao AH có:

\(\dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{I^2}}} \)\(\,= \dfrac{1}{{100}} + \dfrac{9}{{{{\left( { - 20 + 10\sqrt {13} } \right)}^2}}} \)

\(\Rightarrow A{H^2} \approx 22,26 \Rightarrow AH \approx 4,72\)cm

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved