Bài 81 trang 136 Sách bài tập Hình học lớp 12 Nâng cao

Đề bài

Cho đường thẳng d1 đi qua điểm M1(0;0;1), có vec tơ chỉ phương \(\overrightarrow {{u_1}} (0;1;0)\) và đường thẳng d2 đi qua điểm M2(0;0;-1), có vec tơ chỉ phương \(\overrightarrow {{u_2}} (1;0;0).\) Tìm tập hợp các điểm M nằm trong mỗi mặt phẳng tọa độ và cách đều d1, d2.

Lời giải chi tiết

Với điểm \(M\left( {x;y;z} \right)\) bất kì, ta tính được các khoảng cách từ \(M\) tới \({d_1}\) và \({d_2}\)  là:     

\({h_1} = \sqrt {{{\left( {z - 1} \right)}^2} + {x^2}} ,\)     \({h_2} = \sqrt {{{\left( {z + 1} \right)}^2} + {y^2}} .\)

M cách đều \({d_1}\) và \({d_2}\) khi và chỉ khi

\({h_1} = {h_2}\) \(\Leftrightarrow \sqrt {{{\left( {z - 1} \right)}^2} + {x^2}}  = \sqrt {{{\left( {z + 1}\right)}^2} + {y^2}} \) 

\(\eqalign{  &  \Leftrightarrow {x^2} - 2z = {y^2} + 2z  \cr  &  \Leftrightarrow {x^2} - {y^2} = 4z. \cr} \)

Xét trường hợp sau:

+) \(M \in \) mp\(\left( {Oxy} \right)\) khi đó \(z = 0\) suy ra \({x^2} - {y^2} = 0.\)

Vậy quỹ tích điểm M là cặp đường thẳng \(y =  \pm x\) nằm trong mặt phẳng \(z = 0\).

+) M \( \in \) mp(Oyz), tức là x = 0. Quỹ tích điểm M là đường parabol y2 = -4z nằm trong mặt phẳng x = 0.

+) M  \( \in \) mp(Oxz), tức là y = 0. Quỹ tích điểm M là đường parabol x2 = 4z nằm trong mặt phẳng y = 0.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved