Đề bài
Chứng tỏ phân số \({n \over {n + 1}}\) với \(n \in {N^*}\) là phân số tối giản.
Lời giải chi tiết
Gọi d là ƯCLN của n và \(n + 1(d \in N^*)\)
Ta có: \(n \,\vdots \,d\) và \(n + 1 \,\vdots \,d.\) Do đó \(\left[ {\left( {n + 1} \right) - n} \right]\, \vdots\, d \Rightarrow 1 \,\vdots \,d\) mà \(d \in N^*\)
Nên d = 1, n và n + 1 là hai số nguyên tố cùng nhau.
Vậy phân số \({n \over {n + 1}}\) (với \(n \in N^*)\) là hai phân số tối giản
Revision (Units 2 - 3)
Ôn tập hè Chân trời sáng tạo
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Lịch sử lớp 6
Bài 5: Trò chuyện cùng thiên nhiên
Unit 4. Learning world
Ôn tập hè Toán Lớp 6
Bài tập trắc nghiệm Toán - Cánh diều
Bài tập trắc nghiệm Toán - Kết nối tri thức
Bài tập trắc nghiệm Toán 6 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 6
SBT Toán - Cánh diều Lớp 6
SBT Toán - Kết nối tri thức Lớp 6
SBT Toán - Chân trời sáng tạo Lớp 6
SGK Toán - Cánh diều Lớp 6
SGK Toán - Chân trời sáng tạo Lớp 6
SGK Toán - Kết nối tri thức Lớp 6
Đề thi, đề kiểm tra Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán - Kết nối tri thức
Vở thực hành Toán Lớp 6