Đề bài
Cho tam giác đều \(ABC\) cạnh \(a\) quay xung quanh đường cao \(AH\) tạo nên một hình nón. Diện tích xung quanh của hình nón đó là:
(A) \(πa^2\) ; (B) \(2πa^2\) ;
(C) \({1 \over 2}πa^2\) ; (D) \({3 \over 4}πa^2\).
Phương pháp giải - Xem chi tiết
Cho tam giác đều \(ABC\) cạnh \(a\) quay xung quanh đường cao \(AH\) ta được một hình nón đỉnh A, bán kính đáy BH và đường cao AH.
Công thức tính diện tích xung quanh của hình nón: \(S = \pi rl\), trong đó \(r;l\) lần lượt là bán kính đáy và độ dài đường sinh của hình nón.
Lời giải chi tiết
Cho tam giác đều \(ABC\) cạnh \(a\) quay xung quanh đường cao \(AH\) ta được một hình nón đỉnh A, bán kính đáy BH và đường cao AH.
Hình nón sinh ra có bán kính đáy \(r={a\over2}\) đường sinh \(l=a\) nên có diện tích xung quanh là: \({S_{xq}} = \pi rl = \pi {a \over 2}.a = {{\pi {a^2}} \over 2}\)
Chọn (C).
CHƯƠNG I. ĐỘNG LỰC HỌC VẬT RẮN
Tổng hợp từ vựng lớp 12 (Vocabulary) - Tất cả các Unit SGK Tiếng Anh 12 thí điểm
Review 4
Chương 4: Polime và vật liệu polime
SOẠN VĂN 12 TẬP 1