1. Nội dung câu hỏi
Đồ thị của hàm số \(y = \frac{a}{x}\) (a là hằng số dương) là một đường hypebol. Chứng minh rằng tiếp tuyến tại một điểm bất kì của đường hypebol đó tạo với các trục toạ độ một tam giác có diện tích không đổi.
2. Phương pháp giải
Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y - {y_0} = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right),\) trong đó \({y_0} = f\left( {{x_0}} \right)\)
3. Lời giải chi tiết
Ta có \(y' = \frac{{ - a}}{{{x^2}}}\)
Phương trình tiếp tuyến của hypebol tại điểm có hoành độ \({x_0}\) là
\(y - \frac{a}{{{x_0}}} = \frac{{ - a}}{{x_0^2}}\left( {x - {x_0}} \right)\) hay \(y = \frac{{ - a}}{{x_0^2}}x + \frac{{2a}}{{{x_0}}}\)
Gọi phương trình tiếp tuyến cắt hai trục tọa độ lần lượt tại A, B
\( \Rightarrow A\left( {0;\frac{{2a}}{{{x_0}}}} \right),B\left( {2{x_0};0} \right)\)
Do đó diện tích tam OAB bằng \(\frac{1}{2}.OA.OB = \frac{1}{2}\left| {\frac{{2a}}{{{x_0}}}.2{x_0}} \right| = 2a\)
Vậy tiếp tuyến tại một điểm bất kì của đường hypebol đó tạo với các trục toạ độ một tam giác có diện tích không đổi.
Chủ đề 3: Thị trường lao động, việc làm
Chương 6: Hợp chất carbonyl (Aldehyde - Ketone) - Carboxylic acid
SGK Ngữ văn 11 - Chân trời sáng tạo tập 2
Chủ đề 3. Thực hiện các hoạt động xây dựng và phát triển nhà trường
CHƯƠNG 7: HIĐROCACBON THƠM, NGUỒN HIĐROCACBON THIÊN NHIÊN. HỆ THỐNG HÓA VỀ HIĐROCACBON
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11