Đề bài
Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số còn lại?
a) \(e^{-x}\) và \(- e^{-x}\); b) \(\sin 2x\) và \(\sin^2x\)
c) \({\left( {1 - \frac{2}{x}} \right)^2}{e^x}\) và \(\left( {1 - \frac{4}{x}} \right){e^x}\)
Phương pháp giải - Xem chi tiết
+) Sử dụng định nghĩa: Hàm số \(F(x)\) được gọi là nguyên hàm của hàm số \(f(x)\) nếu \(F'(x)=f(x)\) với mọi \(x\) thuộc tập xác định.
+) Sử dụng các công thức tính đạo hàm của các hàm cơ bản: \( \left( {{e^u}} \right)' = u'{e^u};\;\;\left( {\sin u} \right)' = u'\cos u....\)
Lời giải chi tiết
a) \(e^{-x}\) và \(- e^{-x}\) là nguyên hàm của nhau, vì:
\(({e^{ - x}})'= {e^{ - x}}\left( { - 1} \right)= - {e^{ - x}}\) và \(( - {e^{ - x}})' = \left( { - 1} \right)( - {e^{ - x}}) = {e^{ - x}}\)
b) \(sin^2x\) là nguyên hàm của \(sin2x\), vì:
\(\left( {si{n^2}x} \right)'{\rm{ }} = {\rm{ }}2sinx.\left( {sinx} \right)' \\= 2sinxcosx = sin2x\)
c) \(\left( {1 - \frac{4}{x}} \right){e^x}\) là một nguyên hàm của \({\left( {1 - \frac{2}{x}} \right)^2}{e^x}\) vì:
\({\left( {\left( {1 - \frac{4}{x}} \right){e^x}} \right)^\prime } = \frac{4}{{{x^2}}}{e^x} + \left( {1 - \frac{4}{x}} \right){e^x} = \left( {1 - \frac{4}{x} + \frac{4}{{{x^2}}}} \right){e^x} = {\left( {1 - \frac{2}{x}} \right)^2}{e^x}.\)
Các dạng bài nghị luận văn học liên hệ, so sánh
Chương 4. POLIME VÀ VẬT LIỆU POLIME
CHƯƠNG VIII. SƠ LƯỢC VỀ THUYẾT TƯƠNG ĐỐI HẸP
CHƯƠNG I. KHÁI NIỆM VỀ HỆ CƠ SỞ DỮ LIỆU
PHẦN 6: TIẾN HÓA