PHẦN GIẢI TÍCH - TOÁN 12

Bài 1 trang 100 SGK Giải tích 12

Đề bài

Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số còn lại?

a)  \(e^{-x}\) và \(-  e^{-x}\);        b) \(\sin 2x\) và \(\sin^2x\) 

c) \({\left( {1 - \frac{2}{x}} \right)^2}{e^x}\) và \(\left( {1 - \frac{4}{x}} \right){e^x}\)

Phương pháp giải - Xem chi tiết

+) Sử dụng định nghĩa: Hàm số \(F(x)\) được gọi là nguyên hàm của hàm số \(f(x)\) nếu \(F'(x)=f(x)\) với mọi \(x\) thuộc tập xác định.

+) Sử dụng các công thức tính đạo hàm của các hàm cơ bản: \( \left( {{e^u}} \right)' = u'{e^u};\;\;\left( {\sin u} \right)' = u'\cos u....\)

Lời giải chi tiết

a) \(e^{-x}\) và \(-  e^{-x}\) là nguyên hàm của nhau, vì:

\(({e^{ - x}})'= {e^{ - x}}\left( { - 1} \right)=  - {e^{ - x}}\)  và \(( - {e^{ - x}})' = \left( { - 1} \right)( - {e^{ - x}}) = {e^{ - x}}\)

b)  \(sin^2x\)   là nguyên hàm của \(sin2x\), vì:

\(\left( {si{n^2}x} \right)'{\rm{ }} = {\rm{ }}2sinx.\left( {sinx} \right)' \\= 2sinxcosx = sin2x\)

c) \(\left( {1 - \frac{4}{x}} \right){e^x}\) là một nguyên hàm của \({\left( {1 - \frac{2}{x}} \right)^2}{e^x}\) vì:

\({\left( {\left( {1 - \frac{4}{x}} \right){e^x}} \right)^\prime } = \frac{4}{{{x^2}}}{e^x} + \left( {1 - \frac{4}{x}} \right){e^x} = \left( {1 - \frac{4}{x} + \frac{4}{{{x^2}}}} \right){e^x} = {\left( {1 - \frac{2}{x}} \right)^2}{e^x}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved