Đề bài
Giải bài toán sau đây bằng phương pháp tọa độ:
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(1\). Tính khoảng cách từ đỉnh \(A\) đến các mặt phẳng \((A'BD)\) và \((B'D'C)\).
Phương pháp giải - Xem chi tiết
+) Gắn hệ trục tọa độ sao cho \(A(0;0;0), B(1;0;0); D(0;1;0), A'(0;0;1).\)
+) Tìm tọa độ các đỉnh còn lại của hình lập phương.
+) Viết phương trình các mặt phẳng \((A'BD)\) và \((B'D'C)\).
+) Sử dụng công thức tính khoảng cách từ 1 điểm đến một mặt phẳng tính khoảng cách từ đỉnh \(A\) đến các mặt phẳng \((A'BD)\) và \((B'D'C)\).
Lời giải chi tiết
Chọn hệ trục tọa độ \(Oxyz\) sao cho \(A(0 ; 0 ; 0), B(1 ; 0 ; 0), D(0 ; 1; 0), A'(0 ; 0 ; 1)\)
Khi đó \(B'(1 ; 0 ; 1), D'(0 ; 1 ; 1), C(1 ; 1 ; 0)\).
Phương trình mặt phẳng \((A'BD)\) có dạng: \(\dfrac{x}{1} + \dfrac{y}{1} + \dfrac{z}{1} = 1 \) \(\Leftrightarrow x + y + z - 1 = 0\).
\(\overrightarrow{CB'}(0 ; -1 ; 1)\) ; \(\overrightarrow{CD'}(-1 ; 0 ; 1)\)
Mặt phẳng \((B'D'C)\) qua điểm \(C\) và nhận \(\overrightarrow{n}=\left [\overrightarrow{CB'},\overrightarrow{CD'} \right ] = (-1 ; -1 ; -1 )\) hay \(\overrightarrow {n}=(1;1;1)\) làm vectơ pháp tuyến
Phương trình mặt phẳng \((B'D'C)\) có dạng: \(x-1 + y-1 + z = 0 \) \(\Leftrightarrow x+y+z-2=0\)
Vậy:
\(\begin{array}{l}d\left( {A;\left( {A'BD} \right)} \right) = \dfrac{{\left| { - 1} \right|}}{{\sqrt {1 + 1 + 1} }} = \dfrac{1}{{\sqrt 3 }}\\d\left( {A;\left( {B'D'C} \right)} \right) = \dfrac{{\left| { - 2} \right|}}{{\sqrt {1 + 1 + 1} }} = \dfrac{2}{{\sqrt 3 }}\end{array}\)
Unit 4. The Mass Media
Đề kiểm tra 45 phút (1 tiết ) – Chương 7 – Hóa học 12
Đề thi giữa học kì 2
Đề kiểm tra 15 phút
Tiếng Anh 12 mới tập 2