Bài tập 17 trang 104 Tài liệu dạy – học Toán 8 tập 1

Đề bài

Cho tam giác ABC cân tại A, các đường phân giác BD, CE \((D \in AC,E \in AB)\) .

a) Chứng minh  rằng ED // BC.

b) Chứng minh rằng BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.

Lời giải chi tiết

a) Ta có \(\widehat {ABD} = \widehat {DBC} = {{\widehat B} \over 2}\) (BD là tia phân giác của \(\widehat B\))

\(\widehat {ACE} = \widehat {ECB} = {{\widehat C} \over 2}\) (CE là tia phân giác của \(\widehat C\)), \(\widehat B = \widehat C\) (\(\Delta ABC\) cân tại A)

Suy ra \(\widehat {ABD} = \widehat {DBC} = \widehat {ACE} = \widehat {ECB}\)

Xét \(\Delta ACE\) và \(\Delta ABD\) ta có :

\(AC = AB\) (\(\Delta ABC\) cân tại A) ;

\(\widehat A\) chung ;

\(\widehat {ACE} = \widehat {ABD}\) (chứng minh trên)

Xét \(\Delta ACE = \Delta ABD\,\,\left( {g.c.g} \right) \Rightarrow AE = AD\) (hai cạnh tương ứng)

\( \Rightarrow \Delta AED\) cân tại A \( \Rightarrow \widehat {AED} = {{{{180}^0} - \widehat A} \over 2}\)

Mà \(\widehat {ABC} = {{{{180}^0} - \widehat A} \over 2}\) (\(\Delta ABC\) cân tại A). Nên \(\widehat {AED} = \widehat {ABC}\)

Mà \(\widehat {AED}\) và \(\widehat {ABC}\) là hai góc đồng vị.

Do đó ED // BC.

b) Vì ED // BC nên tứ giác BEDC là hình thang.

Mà \(\widehat {EBC} = \widehat {DCB}\) (\(\Delta ABC\) cân tại A). Do đó tứ giác BEDC là hình thang cân)

Ta có : \(\widehat {EBD} = \widehat {DBC}\) (hai góc so le trong và ED // BC)

\( \Rightarrow \widehat {EBD} = \widehat {EDB} \Rightarrow \Delta EBD\) cân tại E \( \Rightarrow BE = ED\).

Vậy tứ giác BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved