Bài tập 20 trang 91 Tài liệu dạy – học Toán 8 tập 2

Đề bài

Cho tam giác ABC vuông tại A (AB < AC). Kẻ đường cao AH \(\left( {H \in BC} \right)\)

a) Chứng minh rằng tam giác ABH đồng dạng với tam giác ABC.

Suy ra: AH.BC = AB.AC.

b) Chứng minh rằng AC2 = CH.CB

c) Chứng minh rằng AH2 = HB.HC.

Lời giải chi tiết

a) Xét ∆ABH và ∆ABC có: \(\widehat B\) (chung) và \(\widehat {AHB} = \widehat {BAC}( = 90^\circ )\)

\( \Rightarrow \Delta ABH \sim \Delta CBA(g.g)\)

\(\Rightarrow {{AH} \over {CA}} = {{AB} \over {BC}} \Rightarrow AH.BC = AB.AC\)

b) Xét ∆ACH và ∆ABC có: \(\widehat C\) (chung) và \(\widehat {AHC} = \widehat {BAC}( = 90^\circ )\)

\( \Rightarrow \Delta ACH \sim \Delta BCA(g.g)\)

\(\Rightarrow {{AC} \over {BC}} = {{CH} \over {AC}} \Rightarrow A{C^2} = BC.CH\)

c) Xét ∆ABH và ∆AHC có: \(\widehat {AHB} = \widehat {AHC}( = 90^\circ )\) và \(\widehat {HAB} = \widehat {ACH}\) (cùng phụ với góc B)

\( \Rightarrow \Delta ABH \sim \Delta CAH(g.g)\)

\(\Rightarrow {{AH} \over {CH}} = {{BH} \over {AH}} \Rightarrow A{H^2} = CH.BH\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved