CHƯƠNG III. QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC – CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC

Bài tập 34 trang 98 Tài liệu dạy – học Toán 7 tập 2

Đề bài

Cho tam giác ABC vuông tại A có M là trung điểm của AC. Gọi E và F lần lượt là hình chiếu kẻ từ A và C đến các đường thẳng BM.

Chứng minh: \(AB < {{BE + BF} \over 2} < BC\)

Lời giải chi tiết

 

Xét ∆AEM vuông tại E và ∆MCF vuông tại F ta có:

AM = MC (M là trung điểm của AC)

Và \(\widehat {EMA} = \widehat {CMF}\) (hai góc đối đỉnh)

Do đó: ∆AEM = ∆CFM (cạnh huyền – góc nhọn)

=> EM = MF

BE + BF = BE + BM + MF = BE + BM + EM (vì MF = EM)

= (BE + EM) + BM = BM + BM = 2BM

Do đó \(BM = {{BE + BF} \over 2}(1)\)

Mà \(BA \bot AC\) tại A,

Mặt khác, ta có AM < AC => BM < BC (3)

Từ (1), (2) và (3) ta có: \(AB < {{BE + BF} \over 2} < BC.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved