1. Quan hệ giữa góc và cạnh trong một tam giác
2. Quan hệ giữa đường vuông góc và đường xiên – Giữa đường xiên và hình chiếu
3. Quan hệ giữa ba cạnh của một tam giác bất đẳng thức tam giác
Bài tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
Luyện tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
1. Tính chất ba đường trung tuyến của tam giác
2. Tính chất tia phân giác của một góc
3. Tính chất ba đường phân giác của tam giác
4. Tính chất đường trung trực của một đoạn thẳng
5. Tính chất ba đường trung trực của tam giác
6. Tính chất ba đường cao trong tam giác
Bài tập - Chủ đề 6 : Các đường đồng quy của tam giác
Luyện tập - Chủ đề 6 : Các đường đồng quy của tam giác
Đề bài
Cho tam giác ABC cân tại A. Trung tuyến BM và CN cắt nhau tại H.
a) Chứng minh BM = CN
b) Chứng minh tam giác BHC cân.
c) Cho biết AH = 8 cm, BC = 18 cm. Tính AB.
Lời giải chi tiết
a) Ta có: \(AN{\rm{ }} = {\rm{ }}BN{\rm{ }} = {{AB} \over 2}\) (N là trung điểm của AB)
\(AM = MC = {{AB} \over 2}\) (M là trung điểm của AC)
AB = AC (∆ABC cân tại A)
Do đó AN = AM = BN = MC.
Xét ∆BMA và ∆CNA ta có: AB = AC (∆ABC cân tại A)
\(\widehat {BAM}\) chung
AM = AN
Do đó: ∆BMA = ∆CAN (c.g.c) => BM = CN.
b) Xét ∆BMC và ∆CNB ta có: BC (cạnh chung)
MC = BN
BM = CN (câu a)
Do đó: ∆BMC = ∆CNB (c.c.c) \( \Rightarrow \widehat {HBC} = \widehat {HCB}\). Vậy ∆BHC cân tại H.
c) Gọi I là giao điểm của AH và BC
∆ABC có hai đường trung tuyến BM và CN cắt nhau tại H (gt)
=> H là trọng tâm của ∆ABC
=> AI là đường trung tuyến của ∆ABC (vì AI đi qua H)
Ta có \(AH = {2 \over 3}AI \Rightarrow AI = {3 \over 2}AH = {3 \over 2}.8 = 12(cm)\)
Vì I là trung điểm của BC \( \Rightarrow BI = {{BC} \over 2} = {{18} \over 2} = 9(cm)\)
∆ABC cân tại A có AI là đường trung tuyến
Nên AI là đường cao \( \Rightarrow AI \bot BC\) tại I
Xét ∆ABI vuông tại I => AB2 = AI2 + BI2 (định lí Pythagore)
Nên AB2 = 122 + 92 = 225.
Do đó AB2 = 152. Vậy AB = 15 (cm).
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Tiếng Anh lớp 7
Songs
Bài 2: Trung thực
Vở thực hành Ngữ văn 7 - Tập 2
HỌC KÌ 2
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Vở thực hành Toán Lớp 7