CHƯƠNG IV. HÌNH LĂNG TRỤ ĐỨNG – HÌNH CHÓP ĐỀU

Bài tập 5 trang 124 Tài liệu dạy – học Toán 8 tập 2

Đề bài

Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = 6 cm, AD = 8 cm và AA’ = 12 cm.

a) Chứng minh các tứ giác AA’C’C, BB’D’D là những hình chữ nhật.

b) Chứng minh rằng:

AC’2 = AB2 + AD2 + AA’2

Tính độ dài đoạn AC’.

c) Tính diện tích toàn phần và thể tích của hình hộp chữ nhật.

Lời giải chi tiết

 

a) Ta có: \(AA' \bot (A'B'C'D') \Rightarrow AA' \bot A'C'\)

\(\Rightarrow \widehat {AA'C'} = 90^\circ \)

\(\eqalign{  & AA' \bot (ABCD) \Rightarrow AA' \bot AC\cr& \Rightarrow \widehat {A'AC} = 90^\circ   \cr  & (A'B'C'D') \bot (CC'D'D) \cr&\Rightarrow CC' \bot A'C' \Rightarrow \widehat {CC'A'} = 90^\circ  \cr} \)

Tứ giác AA’C’C có:

\(\widehat {AA'C} = 90^\circ ,\widehat {A'AC} = 90^\circ ,\)\(\,\widehat {CC'A'} = 90^\circ \)

=> AA’C’C là hình chữ nhật

\(\eqalign{  & BB' \bot (A'B'C'D') \Rightarrow BB' \bot B'D' \cr&\Rightarrow \widehat {BB'D'} = 90^\circ   \cr  & D{\rm{D'}} \bot {\rm{(A'B'C'D')}} \Rightarrow {\rm{DD'}} \bot {\rm{B'D'}}\cr& \Rightarrow \widehat {DD'B'} = 90^\circ   \cr  & BB' \bot (ABCD) \Rightarrow BB' \bot BD\cr& \Rightarrow \widehat {B'BD} = 90^\circ  \cr} \)

Tứ giác BB’D’D có:

\(\widehat {BB'D'} = 90^\circ ,\widehat {DD'B'} = 90^\circ ,\) \(\widehat {B'BD} = 90^\circ \)

=> Tứ giác BB’D’D là hình chữ nhật

b) ∆ABD vuông tại A có \(A{B^2} + A{D^2} = B{D^2}\) (định lý Py-ta-go)

\( \Rightarrow A{B^2} + A{D^2} + AA{'^2} = B{D^2} + AA{'^2}\)

Mà AA’ = CC’ (AA’C’C là hình chữ nhật)

Và BD = AC (ABCD là hình chữ nhật)

\( \Rightarrow A{B^2} + A{D^2} + AA{'^2} = A{C^2} + CC{'^2}\)

Lại có \(A{C^2} + CC{'^2} = AC{'^2}\) (định lí Py-ta-go trong tam giác ACC’ vuông tại C)

Do đó \(A{B^2} + A{D^2} + AA{'^2} = AC{'^2}\)

\(AC{'^2} = {6^2} + {8^2} + {12^2} = 244\)

\(\Rightarrow AC' = 2\sqrt {61} (cm)\)

c) Thế tích của hình hộp chữ nhật: \(V = AB.AD.AA' = 6.8.12 \)\(\,= 576(c{m^3})\)

Diện tích một mặt đáy của hình hộp chữ nhật: \({S_d} = 6.8 = 48(c{m^2})\)

Diện tích xung quanh của hình hộp chữ nhật:

\({S_{xq}} = 2p.h = 2(AB + AD).AA'\)\(\, = 2(6 + 8).12 \)\(\,= 336(c{m^2})\)

Diện tích toàn phần của hình hộp chữ nhật:

\({S_{tp}} = {S_{xq}} + {S_d}.2 = 336 + 48.2 \)\(\,= 432(c{m^2})\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved