Bài 5 trang 68 SGK Hình học 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Tìm tâm và bán kính của các mặt cầu có phương trình sau đây:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

a) \({x^2} + {\rm{ }}{y^{2}} + {\rm{ }}{z^2}-{\rm{ }}8x{\rm{ }} - {\rm{ }}2y{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\);

Phương pháp giải:

Cách 1: Đưa phương trình về dạng phương trình chính tắc: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\), suy ra tâm \(I\left( {a;b;c} \right)\) và bán kính bằng \(R\).

Cách 2: Phương trình có dạng \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\,\,\left( {{a^2} + {b^2} + {c^2} - d > 0} \right)\) là phương trình mặt cầu có tâm \(I\left( {-a;-b;-c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).

Lời giải chi tiết:

Cách 1: Ta có phương trình :

\(\begin{array}{l}
\quad {x^2} + {y^2} + {z^2} - 8x - 2y + 1 = 0\\
\Leftrightarrow {x^2} - 8x + {y^2} - 2y + {z^2} + 1 = 0\\
\Leftrightarrow {x^2} - 8x + 16 + {y^2} - 2y + 1 + {z^2} = 16\\
\Leftrightarrow {\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 16
\end{array}\)

\( \Leftrightarrow {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}4} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}1} \right)^2} + {\rm{ }}{z^2} = {\rm{ }}{4^2}\)

Đây là mặt cầu tâm \(I(4; 1; 0)\) và có bán kính \(r = 4\).

Cách 2: Ta có: 

\(\begin{array}{l}
2a = - 8;\;2b = - 2;\;2c = 0;\;d = 1\\
\Rightarrow a = - 4;{\mkern 1mu} {\mkern 1mu} b = - 1;{\mkern 1mu} {\mkern 1mu} c = 0;{\mkern 1mu} {\mkern 1mu} d = 1\\
{R^2} = {a^2} + {b^2} + {c^2} - d = {\left( { - 4} \right)^2} + {\left( { - 1} \right)^2} + 0 - 1 = 16
\end{array}\)

 do đó đây là phương trình mặt cầu tâm \(I\left( {4;1;0} \right)\), bán kính \(R=4\).

LG b

b) \(3{x^2} + {\rm{ }}3{y^2} + {\rm{ }}3{z^2}-{\rm{ }}6x{\rm{ }} + {\rm{ }}8y{\rm{ }} + {\rm{ }}15z{\rm{ }}-{\rm{ }}3{\rm{ }} = {\rm{ }}0\)

Lời giải chi tiết:

Cách 1

Ta có phương trình:

\(\begin{array}{l}
\quad 3{x^2} + 3{y^2} + 3{z^2} - 6x + 8y + 15z - 3 = 0\\
\Leftrightarrow 3{x^2} - 6x + 3{y^2} + 8y + 3{z^2} + 15z - 3 = 0\\
\Leftrightarrow {x^2} - 2x + {y^2} + \frac{8}{3}y + {z^2} + 5z - 1 = 0\\
\Leftrightarrow \left( {{x^2} - 2x + 1} \right) + \left[ {{y^2} + 2.\frac{4}{3}y + {{\left( {\frac{4}{3}} \right)}^2}} \right] \\+ \left[ {{z^2} + 2.\frac{5}{2}z + {{\left( {\frac{5}{2}} \right)}^2}} \right] - 1 - 1 - {\left( {\frac{4}{3}} \right)^2} - {\left( {\frac{5}{2}} \right)^2} = 0\\
\Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y + \frac{4}{3}} \right)^2} + {\left( {z + \frac{5}{2}} \right)^2} - \frac{{361}}{{36}} = 0\\
\Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y + \frac{4}{3}} \right)^2} + {\left( {z + \frac{5}{2}} \right)^2} = {\left( {\frac{{19}}{6}} \right)^2}
\end{array}\)

Đây là mặt cầu tâm \(J(1; -\dfrac{4}{3};-\dfrac{5}{2})\) và có bán kính là \(R = \dfrac{19}{6}\).

Cách 2: 

Xét phương trình \(3{x^2} + 3{y^2} + 3{z^2} - 6x + 8y + 15z - 3 = 0\)

\(\begin{array}{*{20}{l}}
{ \Leftrightarrow {x^2} + {y^2} + {z^2} - 2x + \frac{8}{3}y + 5z - 1 = 0}\\
{{\rm{Ta \, có : }}2a = - 2;\;2b = \frac{8}{3};\;2c = 5;\;d = - 1}\\
{ \Rightarrow a = - 1;b = \frac{4}{3};c = \frac{5}{2};d = - 1}\\
{{R^2} = {a^2} + {b^2} + {c^2} - d = {{\left( { - 1} \right)}^2} + {{\left( {\frac{4}{3}} \right)}^2} + {{\left( {\frac{5}{2}} \right)}^2} + 1 = \frac{{361}}{{36}} = {{\left( {\frac{{19}}{6}} \right)}^2}}
\end{array}\)

do đó đây là phương trình mặt cầu tâm \(J\left( {1; - \dfrac{4}{3}; - \dfrac{5}{2}} \right)\), bán kính \(R = \dfrac{{19}}{6}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved