Bài tập 6 trang 140 Tài liệu dạy – học Toán 8 tập 1

Đề bài

Cho tam giác ABC vuông tại A, có AB = 6 cm, AC = 8 cm. Gọi I là trung điểm của BC.

a) Tính AI.

b) Gọi M là điểm đối xứng của A qua I. Chứng minh rằng tứ giác ABMC là hình chữ nhật.

c) Gọi E là trung điểm của AI, P là trung điểm của IC, Q là trung điểm của MB. Chứng minh rằng tứ giác BQPE là hình bình hành.

d) Chứng minh rằng \(BE \bot AP\).

Lời giải chi tiết

a) \(\Delta ABC\) vuông tại A có: \(B{C^2} = A{B^2} + A{C^2}\)  (định lí Pytago)

\( \Rightarrow B{C^2} = 36 + 64 \Rightarrow B{C^2} = 100 = {10^2} \Rightarrow BC = 10\,\,\left( {cm} \right)\)

\(\Delta ABC\) vuông tại A có AI là đường trung tuyến) (I là trung điểm của BC)

\(\eqalign{  &  \Rightarrow AI = BI = IC = {{BC} \over 2}  \cr  &  \Rightarrow AI = BI = IC = {{10} \over 2} = 5\,\,\left( {cm} \right) \cr} \)

b) Tứ giác ABMC có BC cắt AM tại I (gt)

I là trung điểm của BC (gt);

I là trung điểm của AM (M đối xứng với A qua I)

Do đó tứ giác ABMC là hình bình hành.

Mà \(\widehat {BAC} = {90^0}\,\,(\Delta ABC\) vuông tại A) nên tứ giác ABMC là hình chữ nhật.

c) E, P lần lượt là trung điểm của AI và IC (gt)

\( \Rightarrow EP\) là đường trung bình của tam giác AIC \( \Rightarrow EP//AC\) và \(EP = {1 \over 2}AC\).

Ta có \(BQ = {1 \over 2}BM\) (Q là trung điểm của BM),

\(EP = {1 \over 2}AC\) (cmt) và \(BM = AC\) (ABMC là hình chữ nhật) \( \Rightarrow BQ = EP\).

Tứ giác BQPE có \(BQ = EP\) và \(BQ//EP\) (cùng song song với AC)

Do đó tứ giác BQPE là hình bình hành.

d) Ta có \(EP//AC\)  (câu c) và \(AC \bot AB\) (\(\Delta ABC\) vuông tại A) \( \Rightarrow EP \bot AC\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved