Đề bài
Đường chéo của một hình hộp chữ nhật là đoạn nối hai đỉnh không thuộc bất cứ mặt bên hay mặt đáy nào. Chứng minh rằng độ dài đường chéo d được tính theo ba kích thước a, b, c bởi công thức:
\(d = \sqrt {{a^2} + {b^2} + {c^2}} \)
Lời giải chi tiết
Xét ∆BCD vuông tại C ta có
\(B{D^2} = D{C^2} + B{C^2}\) (định lí Py-ta-go)
Xét ∆DBA vuông tại B ta có:
\(D{A^2} = A{B^2} + B{D^2}\) (định lí Py-ta-go)
Do đó \(D{A^2} = A{B^2} + D{C^2} + B{C^2} \)\(\,= {c^2} + {a^2} + {b^2}\)
\( \Rightarrow {d^2} = {a^2} + {b^2} + {c^2} \)
\(\Rightarrow d = \sqrt {{a^2} + {b^2} + {c^2}} \)
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Lịch sử lớp 8
Bài 42. Miền Tây Bắc và Bắc Trung Bộ
SBT tiếng Anh 8 mới tập 2
Bài 10. Quyền và nghĩa vụ lao động của công dân
SBT Ngữ văn 8 - Kết nối tri thức với cuộc sống tập 1
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8