Cho điểm \(A(1 ; 0 ; 0)\) và đường thẳng \(∆\): \(\left\{\begin{matrix} x=2+t & \\ y=1+2t & \\ z=t & \end{matrix}\right.\).
LG a
a) Tìm tọa độ điểm \(H\) là hình chiếu vuông góc của điểm \(A\) trên đường thẳng \(∆\).
Phương pháp giải:
Gọi H là hình chiếu vuông góc của A trên đường thẳng \(\Delta\) thì \(H \in \Delta\), tham số hóa tọa độ điểm H theo ẩn t.
\(\overrightarrow {AH} \bot \Delta \Rightarrow \overrightarrow {AH} .{\overrightarrow u _\Delta } = 0\), giải phương trình tìm t, từ đó suy ra tọa độ điểm H.
Lời giải chi tiết:
Đường thẳng \(∆\) có vectơ chỉ phương \(\overrightarrow{u}(1 ; 2 ; 1)\). \(H ∈ ∆\) nên \(H(2 + t ; 1 + 2t ; t)\).
Điểm \(H ∈ ∆\) là hình chiếu vuông góc của \(A\) lên \(∆\) khi và chỉ khi \(\overrightarrow{AH}\bot\) \(\overrightarrow{u}\).
Ta có \(\overrightarrow{AH}(1+t ; 1 + 2t ; t)\) nên:
\(\overrightarrow{AH}\) ⊥ \(\overrightarrow{u}\) ⇔ \(\overrightarrow{u}.\overrightarrow{AH}\) = 0.
⇔ \(1 + t + 2(1 + 2t) + t = 0\)
⇔ \(6t + 3 = 0 ⇔ t = -\dfrac{1}{2}\).
⇔ \(H\left (\dfrac{3}{2};0;-\dfrac{1}{2} \right )\).
LG b
b) Tìm tọa độ điểm \(A'\) đối xứng với \(A\) qua đường thẳng \(∆\).
Phương pháp giải:
A' đối xứng với A qua đường thẳng d suy ra H là trung điểm của AA', với H là hình chiếu vuông góc của A trên \(\Delta\). Từ đó tìm tọa độ điểm A'.
Lời giải chi tiết:
Gọi \(A'\) là điểm đối xứng của \(A\) qua \(∆\) và \(H\) là hình chiếu vuông góc của \(A\) lên \(∆\) thì \(H\) là trung điểm của \(AA'\).
\( \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = 2{x_H} - {x_A} = 2.\dfrac{3}{2} - 1 = 2\\{y_{A'}} = 2{y_H} - {y_A} = 2.0 - 0 = 0\\{z_{A'}} = 2{z_H} - {z_A} = 2.\left( { - \dfrac{1}{2}} \right) - 0 = - 1\end{array} \right. \Rightarrow A'\left( {2;0; - 1} \right)\)
CHƯƠNG V. SÓNG ÁNH SÁNG
PHẦN HAI. LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NĂM 2000
CHƯƠNG 6. BẰNG CHỨNG VÀ CƠ CHẾ TIẾN HÓA
Đề kiểm tra 15 phút - Chương 7 – Hóa học 12
Chương 1. Cơ chế di truyền và biến dị