Bài tập 8 trang 134 Tài liệu dạy – học Toán 8 tập 1

Đề bài

Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC.

a) Chứng minh tứ giác EBFD là hình bình hành.

b) Gọi O là tâm đối xứng của hình bình hành ABCD. CHứng minh rằng ba điểm E, O, F thẳng hàng.

Lời giải chi tiết

a) Ta có :

\(ED = {1 \over 2}AD\) (E là trung điểm của AD)

\(BF = {1 \over 2}BC\) (F là trung điểm của BC)

Và \(AD = BC\) (ABCD là hình bình hành)

\( \Rightarrow ED = BF\)

Mà ED // BF (AD // BC, \(E \in AD;\,\,F \in BC\))

Do đó tứ giác EBFD là hình bình hành.

b) O là tâm đối xứng của hình bình hành ABCD \( \Rightarrow O\) là trung điểm của BD

Hình bình hành EBFD có O là trung điểm của BD \( \Rightarrow O\) là trung điểm của EF.

\( \Rightarrow O \in EF\).

Vậy E, O, F thẳng hàng.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved