Bài tập 8 trang 156 Tài liệu dạy – học Toán 7 tập 1

Đề bài

Cho góc xAy nhọn có At là tia phân giác. Trên tia At ta lấy điểm D, đường thẳng song song với Ay kẻ từ D cắt Ax tại C.

a) Chứng minh rằng \(\widehat {CAD} = \widehat {CDA}\)

b) Trên Ay, lấy điểm B sao cho AB = AC. Chứng minh rằng \(\Delta ACD = \Delta ABD\)

c) Chứng minh rằng AC = DB và AC // DB.

Lời giải chi tiết

 

a) Ay // DC (gt)\( \Rightarrow \widehat {yAD} = \widehat {ADC}\)    (hai góc so le trong).

Mà   \(\widehat {yAD} = \widehat {CAD}\)  (At là tia phân giác góc xAy)

Do đó: \(\widehat {CAD} = \widehat {ADC}\)

b) Xét tam giác ACD và ABD có:

AC = AB (gt)

\(\widehat {CAD} = \widehat {BAD}\)  (At là tia phân giác của góc xAy)

AD là cạnh chung.

Do đó: \(\Delta ACD = \Delta ABD(c.g.c)\)

c) \(Ay//CD \Rightarrow \widehat {ABC} = \widehat {DCB}\)   (hai góc so le trong)

\(\Delta ACD = \Delta ABD\)   (chứng minh câu b) \( \Rightarrow \widehat {ACD} = \widehat {ABD}\)

Mà \(\widehat {DBC} + \widehat {ABC} = \widehat {ABD};\widehat {ACB} + \widehat {BCD} = \widehat {ACD}.\)   Nên  \(\widehat {DBC} = \widehat {ACB}\)

Xét tam giác ABC và DCB có:

\(\eqalign{  & \widehat {ABC} = \widehat {DCB}(cmt)  \cr  & \widehat {ACB} = \widehat {DBC}(cmt) \cr} \)

BC là cạnh chung.

Do đó: \(\Delta ABC = \Delta DCB(g.c.g) \Rightarrow AC = BD\)

Ta có: \(\widehat {DBC} = \widehat {BCA}\)  (chứng minh trên)

Mà hai góc này ở vị trí so le trong nên BD // AC.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved