ĐẠI SỐ VÀ GIẢI TÍCH- SBT TOÁN 11

Bài tập trắc nghiệm trang 235, 236 SBT Đại số và giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
23
24
25
26
27
28
29
30

Chọn đáp án đúng

Lựa chọn câu hỏi để xem giải nhanh hơn
23
24
25
26
27
28
29
30

23

Chọn khoảng thích hợp sau đây để hàm số y = sin2x có giá trị dương:

A. (0; π)             B. (π/2; π)

C. (-π/2; 0)             D. (0; π/2)

Lời giải chi tiết:

Đáp án A: \(x \in \left( {0;\pi } \right) \Rightarrow 2x \in \left( {0;2\pi } \right)\)

Do đó \(\sin 2x\) có thể âm cũng có thể dương (loại A).

Đáp án B: \(x \in \left( {\frac{\pi }{2};\pi } \right) \Rightarrow 2x \in \left( {\pi ;2\pi } \right)\)

Do đó \(\sin 2x < 0\) (loại B).

Đáp án C: \(x \in \left( { - \frac{\pi }{2};0} \right) \Rightarrow 2x \in \left( { - \pi ;0} \right)\)

Do đó \(\sin 2x < 0\) (loại C).

Đáp án D: \(x \in \left( {0;\frac{\pi }{2}} \right) \Rightarrow 2x \in \left( {0;\pi } \right)\)

Do đó \(\sin 2x > 0\) (chọn D).

Cách khác:

Ta có:

\(\begin{array}{l}\sin 2x > 0\\ \Leftrightarrow 2x \in \left( {k2\pi ;\pi  + k2\pi } \right)\\ \Leftrightarrow x \in \left( {k\pi ;\frac{\pi }{2} + k\pi } \right)\end{array}\)

Với \(k = 0\) ta được khoảng \(\left( {0;\frac{\pi }{2}} \right)\) là khoảng làm cho \(y = \sin 2x\) mang giá trị dương.

Chọn đáp án: D

24

Số nghiệm thuộc đoạn [0; π] của phương trình \(\frac{{1 - \cos 6x}}{{\sin x}} = 0\) là:

A. 4          B. 3          C. 2          D. 1

Lời giải chi tiết:

Điều kiện \(\sin x \ne 0\)\( \Leftrightarrow \) x ≠ kπ.

Khi đó,

\(\begin{array}{l}\frac{{1 - \cos 6x}}{{\sin x}} = 0\\ \Rightarrow 1 - \cos 6x = 0\\ \Leftrightarrow \cos 6x = 1\\ \Leftrightarrow 6x = k2\pi \\ \Leftrightarrow x = \frac{{k\pi }}{3},k \in \mathbb{Z}\end{array}\)

Với \(x \in \left[ {0;\pi } \right]\) thì \(0 \le \frac{{k\pi }}{3} \le \pi  \Leftrightarrow 0 \le k \le 3\)

Do \(k \in \mathbb{Z}\) nên \(k \in \left\{ {0,1,2,3} \right\}\)

Với \(k = 0\) thì \(x = 0\left( {KTM} \right)\)

Với \(k = 1\) thì \(x = \frac{\pi }{3}\left( {TM} \right)\)

Với \(k = 2\) thì \(x = \frac{{2\pi }}{3}\left( {TM} \right)\)

Với \(k = 3\) thì \(x = \pi \left( {KTM} \right)\)

Vậy pt có 2 nghiệm trên đoạn \(\left[ {0;\pi } \right]\).

Chọn đáp án: C

25

Số có ba chữ số khác nhau được lập từ 5 chữ số 1; 2; 3; 4; 5 là:

A. 10          B. 60          C. 65          D. 30

Lời giải chi tiết:

Mỗi số lập được là một chỉnh hợp chập 3 của 5 phần tử.

Số các số cần tìm là \(A_5^3 = 60\) số.

Chọn đáp án: B

26

Cho cấp số cộng có u12 = 17, S12 = 72. Số hạng u1 là:

A. 5          B. 7          C. -5          D. 10

Phương pháp giải:

Sử dụng công thức \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}{S_{12}} = 72 \Leftrightarrow \frac{{12\left( {{u_1} + {u_{12}}} \right)}}{2} = 72\\ \Leftrightarrow \frac{{12\left( {{u_1} + 17} \right)}}{2} = 72\\ \Leftrightarrow {u_1} + 17 = 12\\ \Leftrightarrow {u_1} =  - 5\end{array}\)

Chọn đáp án: C

27

Cho cấp số nhân u1; u4 = 2/27. Công bội q của cấp số trên là:

A. 1/2          B. 1/3          C. 2/3          D. 1/27

Phương pháp giải:

Sử dụng công thức \({u_n} = {u_1}{q^{n - 1}}\).

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}{u_4} = {u_1}{q^3}\\ \Rightarrow \frac{2}{{27}} = 2.{q^3}\\ \Leftrightarrow {q^3} = \frac{1}{{27}}\\ \Leftrightarrow q = \frac{1}{3}\end{array}\)

Chọn đáp án: B

28

Giới hạn \(\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{\sin \left( {x - \frac{\pi }{2}} \right)}}{{2x - \pi }}\) bằng:

A. 0          B. -1          C. 1/2          D. 2

Lời giải chi tiết:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{\sin \left( {x - \frac{\pi }{2}} \right)}}{{2x - \pi }}\\ = \mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{\sin \left( {x - \frac{\pi }{2}} \right)}}{{2\left( {x - \frac{\pi }{2}} \right)}}\\ = \frac{1}{2}\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{\sin \left( {x - \frac{\pi }{2}} \right)}}{{x - \frac{\pi }{2}}}\\ = \frac{1}{2}.1\\ = \frac{1}{2}\end{array}\)

Chọn đáp án: C

29

Cho hàm số \(y = \left\{ \begin{array}{l}\frac{{{x^2} - 3x + 2}}{{x - 1}}\,voi\,x \ne 1\\m\,voi\,x = 1\end{array} \right.\)

Hàm số liên tục tại x = 1 khi m bằng:

A. 3          B. 1          C. 0          D. -1

Lời giải chi tiết:

Ta có: \(y = f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 3x + 2}}{{x - 1}}\,voi\,x \ne 1\\m\,voi\,x = 1\end{array} \right.\)

\(f\left( 1 \right) = m\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + 2}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \left( {x - 2} \right) =  - 1\end{array}\)

Để hàm số liên tục tại \(x = 1\) thì \(f\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} f\left( x \right) \Leftrightarrow m =  - 1\).

Vậy \(m =  - 1\).

Chọn đáp án: D

30

Cho hàm số \(y = \frac{{{x^3}}}{3} - 2{x^2} + 1\) có đồ thị (C). Gọi A là một điểm thuộc (C) có hoành độ x0 = 1. Tiếp tuyến của (C) tại A song song với đường thẳng nào dưới đây?

A. x = -3            B. y = -3

C. -3x + y - 1 = 0            D. 3x + y - 1 = 0

Lời giải chi tiết:

Ta có: \(y' = {x^2} - 4x\).

Với \({x_0} = 1\) thì \({y_0} = \frac{1}{3}{.1^3} - {2.1^2} + 1 =  - \frac{2}{3}\) và \(y'\left( 1 \right) = {1^2} - 4.1 =  - 3\).

Phương trình tiếp tuyến tại \(A\left( {1; - \frac{2}{3}} \right)\) có phương trình:

\(\begin{array}{l}y + \frac{2}{3} =  - 3\left( {x - 1} \right)\\ \Leftrightarrow y =  - 3x + \frac{7}{3}\\ \Leftrightarrow 3x + y - \frac{7}{3} = 0\end{array}\)

Đối chiếu các đáp án ta thấy D thỏa mãn.

Chọn đáp án: D

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved