Đề bài
Cho đường thẳng a và vectơ \(\overrightarrow u \) có giá vuông góc với a. Gọi F là phép hợp thành của đối xứng trục Đa. Gọi F là phép hợp thành của đối xứng trục Đa và tịnh tiến \({T_{\overrightarrow u }}\). Với điểm M bất kì, gọi M’ = F(M) và I là trung điểm của MM’.
a) Tìm quỹ tích của I khi M thay đổi.
b) Chứng minh rằng F là phép đối xứng trục.
Lời giải chi tiết
a) Nếu Đa biến điểm M thành N thì \({T_{\overrightarrow u }}\) biến điểm N thành điểm M’ tức là \(\overrightarrow {NM'} = \overrightarrow u \). Vì vectơ \(\overrightarrow u \) có giá vuông góc với a nên ba điểm M, N và M’ cùng nằm trên đường thẳng m vuông góc với a. Gọi J là trung điểm của MN thì J nằm trên a và ta có :
\(\eqalign{ & \overrightarrow {JI} = \overrightarrow {MI} - \overrightarrow {MJ} = {1 \over 2}\left( {\overrightarrow {MM'} - \overrightarrow {MN} } \right) \cr & = {1 \over 2}\overrightarrow {NM'} = {{\overrightarrow u } \over 2}. \cr} \)
Như vậy I là ảnh của J qua phép tịnh tiến theo vectơ \({{\overrightarrow u } \over 2}\), suy ra quỹ tích I là đường thẳng a’ ảnh của a qua phép tịnh tiến đó.
b) Từ câu a), ta suy ra a’ là trung trực của đoạn thẳng MM’. Suy ra F là phép đối xứng trục với trục là đường thẳng a’.
Unit 11: Careers
Unit 4: Planet Earth
Tải 10 đề kiểm tra 15 phút - Chương I - Hóa học 11
Chủ đề 3: Phối hợp kĩ thuật đánh cầu thấp tay
Chuyên đề 2. Tìm hiểu ngôn ngữ trong đời sống xã hội hiện đại
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11