Bài 1 trang 25 SGK Hình học 12

Đề bài

Tính thể tích khối tứ diện đều cạnh \(a\).

Phương pháp giải - Xem chi tiết

+) Gọi \(AH\) là đường cao hạ từ đỉnh \(A\) của tứ diện đều \(ABCD\) \(\left({H \in (BCD)} \right)\).

+) Do tứ diện \(ABCD\) đều, chứng minh \(H\) là trọng tâm tam giác \(ABC\).

+) Sử dụng định lí Pytago tính độ dài \(AH\).

+) Áp dụng công thức tính thể tích: \({V_{ABCD}} = \dfrac{1}{3}AH.{S_{BCD}}\).

Lời giải chi tiết

Cho tứ diện đều \(ABCD\). Hạ \(AH \bot \left( {BCD} \right)\)

Dễ dàng chứng minh được \({\Delta _v}AHB = {\Delta _v}AHC = {\Delta _v}AHD\,\,\left( {ch - cgv} \right) \) \(\Rightarrow HB = HC = HD,\) do đó H là tâm đường tròn ngoại tiếp tam giác \(BCD\).

Do \(BCD\) là tam giác đều nên \(H\) là trọng tâm của tam giác \(BCD\).

Gọi \(M\) là trung điểm \(CD\) thì \(BM\) vừa là trung tuyến vừa là đường cao trong tam giác.

Ta có: \(BM = BD\sin {60^0} = \frac{{a\sqrt 3 }}{2}\)

Do đó \(BH  = \frac{2}{3}BM= \displaystyle{2 \over 3}.{{\sqrt 3 } \over 2}a = {{\sqrt 3 } \over 3}a\)

Áp dụng định lí Pitago trong tam giác vuông \(ABH\) ta có: \(A{H^2} = A{B^2} - B{H^2} = {a^2} - \dfrac{{{a^2}}}{3} = \dfrac{{2{a^2}}}{3} \) \(\Rightarrow AH = \dfrac{{a\sqrt 6 }}{3}\)

Do tam giác \(BCD\) đều cạnh \(a\) nên: \({S_{BCD}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)

Vậy \({V_{ABCD}} = \dfrac{1}{3}AH.{S_{BCD}} \) \(= \dfrac{1}{3}.\dfrac{{a\sqrt 6 }}{3}.\dfrac{{{a^2}\sqrt 3 }}{4} \) \(= \dfrac{{{a^3}\sqrt 2 }}{{12}}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved