ĐẠI SỐ VÀ GIẢI TÍCH - SBT TOÁN 11 NÂNG CAO

Bài 1.15 trang 9 SBT Đại số và Giải tích 11 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Chứng minh:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Điểm có tọa độ \(\left( {k\pi ;0} \right)\) (k là một số nguyên) là tâm đối xứng của đồ thị hàm số \(y = \sin x\)

Lời giải chi tiết:

Điểm \(M'\left( {x';y'} \right)\) là điểm đối xứng của điểm \(M\left( {x;y} \right)\) qua điểm \(\left( {k\pi ;0} \right)\) khi và chỉ khi:

\({{x + x'} \over 2} = k\pi ,{{y + y'} \over 2} = 0\)

tức là 

\(\left\{ \matrix{
x' = - x + k2\pi \hfill \cr 
y' = y \hfill \cr} \right.\)

Gọi (C) là đồ thị hàm số \(y = \sin x\).

(C) nhận \(\left( {k\pi ;0} \right)\) làm tâm đối xứng khi và chỉ khi: Với mọi điểm \(M\left( {x;y} \right)\) thuộc (C) (tức là với mọi \(x,y = \sin x\)) điểm  \(M'\left( {x';y'} \right)\) nói trên (tức là \(x' =  - x + k2\pi ,y' =  - y)\) cũng thuộc (C); điều này có nghĩa là \( - \sin x = \sin \left( {x + k2\pi } \right),\) với mọi \(x \in Z\) là một tâm đối xứng của đồ thị (C) của hàm số \(y = \sin x\)

Cách chứng minh khác:

Xét phép đổi trục  tọa độ Oxy sang trục hệ tọa độ IXY, với \(I\left( {k\pi ;0} \right);x = X + k\pi ;y = Y\) (phép biến đổi gốc tọa độ), (h.vẽ) thì đồ thị của hàm số  \(y = \sin x\) trong hệ trục tọa độ Oxy là đồ thị của hàm số

\(Y = \sin \left( {X + k\pi } \right) = {\left( { - 1} \right)^k}\sin X\)

Trong hệ tọa độ IXY. Vì hàm số  \(Y = {\mathop{\rm sinX}\nolimits} \) cũng như hàm số \(Y =  - {\mathop{\rm sinX}\nolimits} \) là hàm số lẻ nên đồ thị nhận I là tâm đối xứng.

LG b

Điểm có tọa độ \(\left( {{{k\pi } \over 2};0} \right)\) (k là một số nguyên) là tâm đối xứng của đồ thị hàm số \(y = \tan x\)

Lời giải chi tiết:

Điểm \(M'\left( {x';y'} \right)\) là điểm đối xứng của \(M\left( {x;y} \right)\) qua điểm \(\left( {{{k\pi } \over 2};0} \right)\) khi và chỉ khi

\({{x + x'} \over 2} = {{k\pi } \over 2},{{y + y'} \over 2} = 0,\)

tức là 

\(\left\{ \matrix{
x' = - x + k\pi \hfill \cr 
y' = - y \hfill \cr} \right.\)

Gọi (C) là đồ thị của hàm số \(y = \tan x\);

(C) nhận \(\left( {{{k\pi } \over 2};0} \right)\) làm tâm đối xứng khi và chỉ khi: Với mọi điểm \(M\left( {x;y} \right)\) thuộc (C) (tức là \(x \in {D_1},y = \tan x\)) điểm \(M'\left( {x';y'} \right)\) nói trên (tức là \(x' =  - x + k\pi ,y' =  - y\)) cũng thuộc (C); điều này có nghĩa là \( - \tan x = \tan \left( { - x + k\pi } \right),\) với mọi \(X \in {D_1}.\)

Điều đó đúng do \(\pi \) là chu kì của hàm số \(y = \tan x\).

Vậy điểm \(\left( {{{k\pi } \over 2};0} \right),k \in Z\) là một tâm đối xứng của đồ thị (C) của hàm số \(y = \tan x\)

Chứng minh cách khác:

Xét phép đổi trục tọa độ Oxy sang hệ trục tọa độ IXY, với \(I\left( {{{k\pi } \over 2};0} \right);x = X + {{k\pi } \over 2};y = Y.\)

Đồ thị của hàm số \(y = \tan x\) trong hệ trục toạn độ Oxy là đồ thị của hàm số                             

\(Y = \tan \left( {X + k{\pi \over 2}} \right) = \left\{ \matrix{
\tan X\,\,\,\,\,\,\,\,\,\,neu\,\,K\text{ chẵn } \hfill \cr 
- {1 \over {\tan X}}\,\,\,\,\,neu\,\,K\text{ lẻ } \hfill \cr} \right.\)

Trong hệ tọa độ IXY. Vì hàm số \(Y = \tan X\) cũng như hàm số \(Y =  - {1 \over {\tan X}}\) là hàm số lẻ nên đồ thị nhận I làm tâm đối xứng.

LG c

Đường thẳng có phương trình \(x = k\pi \) (k là một số nguyên) là trục đối xứng của đồ thị hàm số \(y = \cos x\)

Lời giải chi tiết:

Điểm \(M'\left( {x';y'} \right)\) là điểm đối xứng của điểm \(M\left( {x;y} \right)\) qua đường thẳng \(x = k\pi \) (h.vẽ) khi và chỉ khi \({{x + x'} \over 2} = k\pi ,y = y',\) tức là

\(\left\{ \matrix{{x'} =  - x + k2\pi  \hfill \cr {y'} = y \hfill \cr}  \right.\)

Gọi (C) là đồ thị của hàm số \(y = \cos x.\)

(C) nhận đường thẳng \(x = k\pi \) làm một trục đối xứng khi và chỉ khi: Với mọi điểm \(M\left( {x;y} \right)\) thuộc C (tức là với mọi \(x,y = \cos x\)) điểm  \(M'\left( {x';y'} \right)\) nói trên cũng thuộc (C).

Điều này có nghĩa là

\(\cos x = \cos \left( { - x + k2\pi } \right),\forall x \in R\)

Rõ ràng ta có đẳng thức đó, do \(2\pi \) là chu kì của hàm số \(y = \cos x.\)

Vậy đường thẳng \(x = k\pi ,k \in Z\) là một trục đối xứng của đồ thị (C) của hàm số \(y = \cos x.\)

Cách chứng minh khác

Xét phép đổi trục tọa độ Oxy sang trục toạ độ IXY, với \(I\left( {k\pi ;0} \right);x = X + k\pi ;y = Y,\) thì đồ thị của hàm số \(y = \cos x\) trong hệ trục tọa độ Oxy là đồ thị của hàm số \(Y = \cos \left( {X + k\pi } \right) = {\left( { - 1} \right)^k}\cos X\) trong hệ tọa độ IXY.

Vì hàm số \(Y = \cos X\) cũng như hàm số \(Y =  - \cos X\) là các hàm số chẵn nên đồ thị đó nhận trục IXY (tức là đường thẳng \(x = k\pi \)) làm trục đối xứng. 

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved