Câu 12 trang 115 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho hai đường thẳng ∆, ∆1 cắt ba mặt phẳng song song (α), (β), (γ) lần lượt tại A, B, C và A1, B1, C1. Với điểm O bất kì trong không gian, đặt \(\overrightarrow {OI}  = \overrightarrow {A{A_1}} ,\overrightarrow {OJ}  = \overrightarrow {B{B_1}} ,\overrightarrow {OK}  = \overrightarrow {C{C_1}} \) . Chứng minh rằng ba điểm I, J, K thẳng hàng.

Lời giải chi tiết

Theo giả thiết, ta có:

\(\overrightarrow {OI}  = \overrightarrow {A{A_1}} ,\overrightarrow {OJ}  = \overrightarrow {B{B_1}} ,\overrightarrow {OK}  = \overrightarrow {C{C_1}} \) .

Do (α), (β), (γ) song song với  nhau, hai đường thẳng ∆, ∆1 cắt chúng lần lượt tại A, B, C và A1, B1, C1 nên theo định lí Ta-lét, ta có:

\(\overrightarrow {BA}  = k\overrightarrow {BC} \)  và \(\overrightarrow {{B_1}{A_1}}  = k\overrightarrow {{B_1}{C_1}} \)

Từ \(\overrightarrow {BA}  = k\overrightarrow {BC} \)  nên với điểm O, ta có:

\(\overrightarrow {OB}  = {{\overrightarrow {OA}  - k\overrightarrow {OC} } \over {1 - k}}\)

Tương tự, ta cũng có:

\(\overrightarrow {O{B_1}}  = {{\overrightarrow {O{A_1}}  - k\overrightarrow {O{C_1}} } \over {1 - k}}\)

Từ đó: \(\overrightarrow {B{B_1}}  = \overrightarrow {O{B_1}}  - \overrightarrow {OB}  = {{\overrightarrow {A{A_1}} } \over {1 - k}} - {k \over {1 - k}}\overrightarrow {C{C_1}} \)

hay \(\overrightarrow {OJ}  = {1 \over {1 - k}}\overrightarrow {OI}  - {k \over {1 - k}}\overrightarrow {OK} \)

Lấy O trùng với I, ta có \(\overrightarrow {IJ}  =  - {k \over {1 - k}}\overrightarrow {IK} \)

Như vậy ba điểm I, J, K thẳng hàng.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved