Giải các phương trình sau:
LG a
$\sin \left( {3x - {\pi \over 6}} \right) = {{\sqrt 3 } \over 2}$
Lời giải chi tiết:
$\begin{array}{l}
\sin \left( {3x - \frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}\\
\Leftrightarrow \sin \left( {3x - \frac{\pi }{6}} \right) = \sin \frac{\pi }{3}\\
\Leftrightarrow \left[ \begin{array}{l}
3x - \frac{\pi }{6} = \frac{\pi }{3} + k2\pi \\
3x - \frac{\pi }{6} = \pi - \frac{\pi }{3} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
3x = \frac{\pi }{2} + k2\pi \\
3x = \frac{{5\pi }}{6} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{6} + \frac{{k2\pi }}{3}\\
x = \frac{{5\pi }}{{18}} + \frac{{k2\pi }}{3}
\end{array} \right.
\end{array}$
LG b
$\sin \left( {3x - 2} \right) = - 1$
Lời giải chi tiết:
$\begin{array}{l}
\sin \left( {3x - 2} \right) = - 1\\
\Leftrightarrow 3x - 2 = - \frac{\pi }{2} + k2\pi \\
\Leftrightarrow 3x = 2 - \frac{\pi }{2} + k2\pi \\
\Leftrightarrow x = \frac{2}{3} - \frac{\pi }{6} + \frac{{k2\pi }}{3}
\end{array}$
LG c
$\sqrt 2 \cos \left( {2x - {\pi \over 5}} \right) = 1$
Lời giải chi tiết:
$\begin{array}{l}
\sqrt 2 \cos \left( {2x - \frac{\pi }{5}} \right) = 1\\
\Leftrightarrow \cos \left( {2x - \frac{\pi }{5}} \right) = \frac{1}{{\sqrt 2 }}\\
\Leftrightarrow \cos \left( {2x - \frac{\pi }{5}} \right) = \cos \frac{\pi }{4}\\
\Leftrightarrow \left[ \begin{array}{l}
2x - \frac{\pi }{5} = \frac{\pi }{4} + k2\pi \\
2x - \frac{\pi }{5} = - \frac{\pi }{4} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \frac{{9\pi }}{{20}} + k2\pi \\
2x = - \frac{\pi }{{20}} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{{9\pi }}{{40}} + k\pi \\
x = - \frac{\pi }{{40}} + k\pi
\end{array} \right.
\end{array}$
LG d
$\cos \left( {3x - {{15}^o}} \right) = \cos {150^o}$
Lời giải chi tiết:
$\begin{array}{l}
\cos \left( {3x - {{15}^0}} \right) = \cos {150^0}\\
\Leftrightarrow \left[ \begin{array}{l}
3x - {15^0} = {150^0} + k{360^0}\\
3x - {15^0} = - {150^0} + k{360^0}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
3x = {165^0} + k{360^0}\\
3x = - {135^0} + k{360^0}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = {55^0} + k{120^0}\\
x = - {45^0} + k{120^0}
\end{array} \right.
\end{array}$
LG e
$\tan \left( {2x +3} \right) = \tan {\pi \over 3}$
Lời giải chi tiết:
$\begin{array}{l}
\tan \left( {2x + 3} \right) = \tan \frac{\pi }{3}\\
\Leftrightarrow 2x + 3 = \frac{\pi }{3} + k\pi \\
\Leftrightarrow 2x = \frac{\pi }{3} - 3 + k\pi \\
\Leftrightarrow x = \frac{\pi }{6} - \frac{3}{2} + \frac{{k\pi }}{2}
\end{array}$
LG f
$\cot \left( {{{45}^o} - x} \right) = {{\sqrt 3 } \over 3}$
Lời giải chi tiết:
$\begin{array}{l}
\cot \left( {{{45}^0} - x} \right) = \frac{{\sqrt 3 }}{3}\\
\Leftrightarrow \cot \left( {{{45}^0} - x} \right) = \cot {60^0}\\
\Leftrightarrow {45^0} - x = {60^0} + k{180^0}\\
\Leftrightarrow x = - {15^0} - k{180^0}
\end{array}$
Bài 6. Tiết 3: Thực hành: Tìm hiểu sự phân hóa lãnh thổ sản xuất của Hoa Kì - Tập bản đồ Địa lí 11
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương III - Hóa học 11
Hello!
Chương VII. Ô tô
CHƯƠNG II. CẢM ỨNG
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11