LG a
LG a
Biết \(\cos {{2\pi } \over 5} = {{\sqrt 5 - 1} \over 4}\) hãy đưa ra biểu thức \(\sin x + \sqrt {5 + 5\sqrt 5 } \cos x\) về dạng \(C\sin \left( {x + \alpha } \right)\)
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}
\cos \frac{{2\pi }}{5} = \frac{{\sqrt 5 - 1}}{4}\\
\Rightarrow {\tan ^2}\frac{{2\pi }}{5} = \frac{1}{{{{\cos }^2}\frac{{2\pi }}{5}}} - 1\\
= 1:{\left( {\frac{{\sqrt 5 - 1}}{4}} \right)^2} - 1\\
= 5 + 2\sqrt 5 \\
\Rightarrow \tan \frac{{2\pi }}{5} = \sqrt {5 + 2\sqrt 5 } \\
\Rightarrow \sin x + \sqrt {5 + 2\sqrt 5 } \cos x\\
= \sin x + \tan \frac{{2\pi }}{5}\cos x\\
= \frac{1}{{\cos \frac{{2\pi }}{5}}}\left( {\sin x\cos \frac{{2\pi }}{5} + \sin \frac{{2\pi }}{5}\cos x} \right)\\
= \frac{4}{{\sqrt 5 - 1}}\sin \left( {x + \frac{{2\pi }}{5}} \right)
\end{array}\)
LG b
LG b
Dùng máy tính cầm tay tính gần đúng C và \(\alpha \) nói trên.
Lời giải chi tiết:
\(C \approx 3,236067978,\alpha \approx 1,256637061...\)
Câu hỏi tự luyện Sinh 11
CHƯƠNG III: NHÓM CACBON
Unit 3: Cities of the future
Unit 1: Food for Life
Unit 1: Eat, drink and be healthy
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11