Đề bài
Tìm các giá trị x thuộc \(\left( { - {{3\pi } \over 4};\pi } \right)\) thỏa mãn phương trình sau với mọi m:
\({m^2}\sin x - m{\sin ^2}x - {m^2}\cos x + m{\cos ^2}x \)\(= \cos x - \sin x\)
Lời giải chi tiết
Viết phương trình đã cho dưới dạng
\(\left( {\sin x - \cos x} \right){m^2} + \left( {{{\cos }^2}x - {{\sin }^2}x} \right)m \)
\(+ \left( {\sin x - \cos x} \right) = 0.\)
Để đẳng thức này đúng với mọi m thì ta phải có
\(\left\{ \matrix{
\sin x - \cos x = 0 \hfill \cr
{\cos ^2}x - {\sin ^2}x = 0 \hfill \cr} \right.\)
\( \Leftrightarrow \) \(\sin x - \cos x = 0\)
\(\begin{array}{l}
\Leftrightarrow \sin x = \cos x\\
\Leftrightarrow \tan x = 1\\
\Leftrightarrow x = \frac{\pi }{4} + k\pi
\end{array}\)
Trong khoảng \(\left( { - {{3\pi } \over 4};\pi } \right)\) có đúng một giá trị \(x = {\pi \over 4}\) thỏa mãn phương trình đã cho với mọi \(m \in R\).
CHƯƠNG II. CẢM ỨNG
Chương II. Sóng
Chủ đề 4. Dòng điện. Mạch điện
Review 3
Unit 6: Preserving our heritage
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11