Câu 14 trang 115 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho tứ diện ABCD. Lấy các điểm M, N, P. Q lần lượt thuộc AB, BC, CD, DA sao cho

\(\overrightarrow {AM}  = {1 \over 3}\overrightarrow {AB} ,\overrightarrow {BN}  = {2 \over 3}\overrightarrow {BC},\)

\(\overrightarrow {AQ}  = {1 \over 2}\overrightarrow {A{\rm{D}}} ,\overrightarrow {DP}  = k\overrightarrow {DC}. \)

Hãy xác định k để bốn điểm P, Q, M, N cùng nằm trên một mặt phẳng.

Lời giải chi tiết

Cách 1

Từ \(\overrightarrow {AM}  = {1 \over 3}\overrightarrow {AB} \)  ta có \(\overrightarrow {BM}  = {2 \over 3}\overrightarrow {BA} \) , mặt khác \(\overrightarrow {BN}  = {2 \over 3}\overrightarrow {BC} \) nên MN // AC.

Nếu có k để các điểm M, N, P, Q thuộc một mặt phẳng thì mp(MNQ) cắt mp(ACD) theo giao tuyến PQ nên PQ // AC.

Mặt khác \(\overrightarrow {AQ}  = {1 \over 2}\overrightarrow {A{\rm{D}}} \) nên \(\overrightarrow {DP}  = {1 \over 2}\overrightarrow {DC} \).

Vậy \(k = {1 \over 2}\) thì các điểm M, N, P, Q cùng thuộc một mặt phẳng.

Cách 2:

Đặt \(\overrightarrow {DA}  = \overrightarrow a ,\overrightarrow {DB}  = \overrightarrow b ,\overrightarrow {DC}  = \overrightarrow c \) .

Khi đó \(\overrightarrow {BC}  = \overrightarrow c  - \overrightarrow b ,\overrightarrow {AB}  = \overrightarrow b  - \overrightarrow a \).

Do \(\overrightarrow {AM}  = {1 \over 3}\overrightarrow {AB} \)

nên

$$\eqalign{
& \overrightarrow {AM} = {1 \over 3}\left( {\overrightarrow b - \overrightarrow a } \right) = - {1 \over 3}\overrightarrow a + {1 \over 3}\overrightarrow b \cr 
& \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {BN} = \overrightarrow b - \overrightarrow a + {2 \over 3}\left( {\overrightarrow c - \overrightarrow b } \right) \cr 
& = - \overrightarrow a + {1 \over 3}\overrightarrow b + {2 \over 3}\overrightarrow c \cr 
& \overrightarrow {AP} = \overrightarrow {A{\rm{D}}} + \overrightarrow {DP} = - \overrightarrow a + k\overrightarrow {DC} = - \overrightarrow a + k\overrightarrow c \cr 
& \overrightarrow {AQ} = - {1 \over 2}\overrightarrow a \cr} $$

Khi đó

\(\eqalign{  & \overrightarrow {MN}  =  - {2 \over 3}\overrightarrow a  + {2 \over 3}\overrightarrow c   \cr  & \overrightarrow {MP}  =  - {2 \over 3}\overrightarrow a  - {1 \over 3}\overrightarrow b  + k\overrightarrow c   \cr  & \overrightarrow {MQ}  =  - {1 \over 6}\overrightarrow a  - {1 \over 3}\overrightarrow b  \cr} \)

Các điểm M, N, P, Q thuộc một mặt phẳng khi và chỉ khi có số x, y sao cho

\(\eqalign{& \overrightarrow {MP} = x\overrightarrow {MN} + y\overrightarrow {MQ} \cr & \Leftrightarrow - {2 \over 3}\overrightarrow a - {1 \over 3}\overrightarrow b + k\overrightarrow c \cr & = - {2 \over 3}x\overrightarrow a + {2 \over 3}x\overrightarrow c - {1 \over 6}y\overrightarrow a - {1 \over 3}y\overrightarrow b \cr} \)

Do \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \)  không đồng phẳng nên điều đó tương đương với:

\(\eqalign{  & \left\{ \matrix{   - {2 \over 3}x - {1 \over 6}y =  - {2 \over 3} \hfill \cr   - {1 \over 3}y =  - {1 \over 3} \hfill \cr  {2 \over 3}x = k \hfill \cr}  \right.  \cr  &  \Rightarrow y = 1,x = {3 \over 4},k = {1 \over 2} \cr} \)

Vậy khi \(k = {1 \over 2}\)  thì các điểm M, N, P, Q thuộc cùng một mặt phẳng.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved