Dãy số \(\left( {{u_n}} \right)\) được cho bởi \({u_1} = 2\) và \({u_{n + 1}} = 2{u_n} - 1\) với mọi \(n \ge 1\)
LG a
Chứng minh dãy số \(\left( {{v_n}} \right)\), trong đó \({v_n} = {u_n} - 1\) là một cấp số nhân. Tìm số hạng đầu và công bội của cấp số nhân đó.
Lời giải chi tiết:
Với mọi \(n \ge 1,\) ta có \({u_{n + 1}} = 2{u_n} - 1 \Rightarrow {u_{n + 1}} - 1 = 2\left( {{u_n} - 1} \right) \Rightarrow {v_{n + 1}} = 2{v_n}\)
Vậy \(\left( {{v_n}} \right)\) là cấp số nhân với số hạng đầu \({v_1} = {u_1} - 1\) và công bội \(q = 2\)
LG b
Tìm số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\)
Lời giải chi tiết:
Từ câu a) suy ra số hạng tổng quát của \(\left( {{v_n}} \right)\) là \({v_n} = {2^{n - 1}}\). Do đó số hạng tổng quát của dãy \(\left( {{u_n}} \right)\) là \({u_{n + 1}} = {v_n} + 1 = {2^{n - 1}} + 1\)
LG c
Tính tổng của 100 số hạng đầu tiên của dãy số \(\left( {{u_n}} \right)\)
Phương pháp giải:
Hướng dẫn: \(S = {u_1} + {u_2} + ... + {u_{100}} = {v_1} + {v_2} + ... + {v_{100}}+ 100\)
Lời giải chi tiết:
\(S = {2^{100}} + 99\)
Chương 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
PHẦN HAI: LỊCH SỬ THẾ GIỚI HIỆN ĐẠI
Bài 1. Bảo vệ chủ quyền lãnh thổ, biên giới quốc gia nước Cộng hòa xã hội chủ nghĩa Việt Nam
Unit 2: Leisure time
Đề thi giữa kì 1
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11