Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho đường thẳng a và một điểm I nằm trên nó. Gọi F là phép dời hình biến a thành a và I là điểm duy nhất biến thành chính nó. Chứng minh rằng F biến điểm M bất kì thành điểm M’ sao cho I là trung điểm MM’.
Lời giải chi tiết
Lấy điểm M bất kì nằm trên a và khác I, phép dời hình F biến a thành a nên biến điểm M thành điểm M’ trên a, IM = IM’.
Ngoài ra vì M khác M’ nên I là trung điểm của MM’.
Gọi b là đường thẳng đi qua I, vuông góc với a thì F biến b thành đường thẳng đi qua I và vuông góc với a.
Do đó b biến thành b.
Cũng lập luận như trên,nếu N nằm trên b thì F biến N thành N’ sao cho I là trung điểm của NN’.
Bây giờ giả sử điểm P không nằm trên a và b. Kẻ \(PM \bot a\) và \(PN \bot b\,\left( {M \in a,\,N \in b} \right)\).
Theo chứng minh trên M biến thành M’, N biến thành N’ sao cho I là trung điểm của MM’ và NN’.
Suy ra P biến điểm P sao cho M’IN’P là hình chữ nhật và do đó I là trung điểm của PP’.
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Địa lí lớp 11
Chủ đề 3: Kĩ thuật đá cầu tấn công và chiến thuật tấn công cơ bản
Bài 9: Phương pháp tách biệt và tinh chế hợp chất hữu cơ
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương I - Hóa học 11
Tải 10 đề kiểm tra 15 phút - Chương VII - Hóa học 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11