Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Chứng minh rằng nếu phép dời hình F biến mỗi đường thẳng a thành đường thẳng a’ vuông góc với a thì có một điểm duy nhất biến thành chính nó qua phép F.
Lời giải chi tiết
Trước hết, F không thể biến hai điểm phân biệt thành chính nó vì khi đó đường thẳng đi qua hai điểm đó phải biến thành chính nó, trái với giả thiết là F biến đường thẳng thành đường thẳng vuông góc.
Để chứng minh sự tồn tại của điểm biến thành chính nó, ta đã lấy một điểm A nào đó và gọi \({A_1} = F\left( A \right),\,{A_2} = F\left( {{A_1}} \right)\).
Nếu A trùng \({A_1}\) thì A là điểm biến thành chính nó, bởi vậy ta giả sử rằng A khác \({A_1}\).
Khi đó \({A_2}\) khác \({A_1}\) và đường thẳng \({A_1}{A_2}\) vuông góc với đường thẳng \(A{A_1}\).
Đường thẳng của \(A{A_2}\) là đường thẳng d qua \({A_1}\), vuông góc với \(A{A_2}\).
Đường thẳng \({A_1}{A_2}\) là đường thẳng d’ qua \({A_2}\), vuông góc với \({A_1}{A_2}\).
Vậy F biến \({A_2}\) thành giao điểm \({A_3}\) của d và d’.
Vì F là phép dời hình nên \(A{A_1}{A_2}{A_3}\) là hình vuông.
Trung điểm I của \(A{A_2}\) biến thành trung điểm của \({A_1}{A_3}\), tức là I biến thành chính nó qua F.
Vậy F có duy nhất điểm I biến thành chính nó.
Chương I. Dao động
Bài 7. Pháp luật về quản lí vũ khí, vật liệu nổ, công cụ hỗ trợ
Unit 5: Cities and Education in the future
Unit 3: Sustainable health
Chuyên đề 2. Tìm hiểu ngôn ngữ trong đời sống xã hội hiện đại
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11