Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
LG a
Khảo sát sự biến thiên và vẽ đồ thị của hàm số
\(y = {x^4} - 2{x^2} + 3\)
Lời giải chi tiết:
+) TXĐ: \(D = \mathbb{R}\).
+) Chiều biến thiên:
\(\mathop {\lim }\limits_{x \to \pm \infty } y = + \infty \)
\(\begin{array}{l}y' = 4{x^3} - 4x\\y' = 0 \Leftrightarrow 4{x^3} - 4x = 0\\ \Leftrightarrow 4x\left( {{x^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 1\end{array} \right.\end{array}\)
BBT:
Hàm số nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\).
Hàm số đồng biến trên các khoảng \(\left( { - 1;0} \right)\) và \(\left( {1; + \infty } \right)\).
Hàm số đạt cực đại tại \(x = \pm 1,{y_{CD}} = 2\)
Hàm số đạt cực tiểu tại \(x = 0,{y_{CT}} = 3\).
+) Đồ thị:
Trục đối xứng: \(Oy\).
Đồ thị hàm số cắt trục tung tại điểm \(\left( {0;3} \right)\).
Điểm cực đại \(\left( {0;3} \right)\) và điểm cực tiểu \(\left( { - 1;2} \right),\left( {1;2} \right)\).
LG b
Viết phương trình tiếp tuyến của đồ thị tại mỗi điểm uốn của nó
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}y'' = 12{x^2} - 4\\y'' = 0 \Leftrightarrow 12{x^2} - 4 = 0\\ \Leftrightarrow {x^2} = \frac{1}{3} \Leftrightarrow x = \pm \frac{1}{{\sqrt 3 }}\\ \Rightarrow y\left( { \pm \frac{1}{{\sqrt 3 }}} \right) = \frac{{22}}{9}\end{array}\)
Với \({U_1}\left( {\frac{1}{{\sqrt 3 }};\frac{{22}}{9}} \right)\) ta có \(y'\left( {\frac{1}{{\sqrt 3 }}} \right) = - \frac{{8\sqrt 3 }}{9}\) nên phương trình tiếp tuyến là:
\(y = - \frac{{8\sqrt 3 }}{9}\left( {x - \frac{1}{{\sqrt 3 }}} \right) + \frac{{22}}{9}\) hay \(y = - \frac{{8\sqrt 3 }}{9}x + \frac{{10}}{3}\).
Với \({U_2}\left( { - \frac{1}{{\sqrt 3 }};\frac{{22}}{9}} \right)\) ta có \(y'\left( { - \frac{1}{{\sqrt 3 }}} \right) = \frac{{8\sqrt 3 }}{9}\) nên phương trình tiếp tuyến là:
\(y = \frac{{8\sqrt 3 }}{9}\left( {x + \frac{1}{{\sqrt 3 }}} \right) + \frac{{22}}{9}\) hay \(y = \frac{{8\sqrt 3 }}{9}x + \frac{{10}}{3}\).
Unit 3. Ways of Socialising
Unit 15: Women In Society - Phụ Nữ Trong Xã Hội
Bài 10. Pháp luật với hòa bình và sự phát triển tiến bộ của nhân loại
Nghị luận văn học lớp 12
Review 2