Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
LG a
Tìm các giá trị m sao cho hàm số
\(y = {{ - 2{x^2} + (m + 2)x - 3m + 1} \over {x - 1}}\)
Nghịch biến trên mỗi khoảng xác định của nó.
Lời giải chi tiết:
Ta viết hàm số đã cho dưới dạng
\(y = - 2x + m + {{1 - 2m} \over {x - 1}}\)
Khi đó: \(y' = - 2 + {{2m - 1} \over {{{(x - 1)}^2}}}\)
+) Nếu \(2m - 1 \le 0\) hay \(m \le {1 \over 2}\) thì \(y' < 0\) với mọi \(x \ne 1\).
Do đó hàm số nghịch biến trên mỗi khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\)
+) Dễ thấy nếu \(2m - 1 > 0\) hay \(m > {1 \over 2}\) thì phương trình \(y' = 0\) có hai nghiệm \({x_1},{x_2}\) trong đó \({x_1} < 1 < {x_2}\)
Hàm số đồng biến trên mỗi khoảng \(\left( {{x_1};1} \right)\) và \(\left( {1;{x_2}} \right)\).
Trong trường hợp này, các giá trị của m không thỏa mãn điều kiện đòi hỏi.
LG b
Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m = 0.
Lời giải chi tiết:
Với \(m = 0\) ta được \(y = \frac{{ - 2{x^2} + 2x + 1}}{{x - 1}} = - 2x + \frac{1}{{x - 1}}\)
+) TXĐ: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\)
+) Chiều biến thiên:
\(\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty ,\mathop {\lim }\limits_{x \to {1^ - }} y = - \infty \) nên TCĐ: \(x = 1\).
\(\mathop {\lim }\limits_{x \to \pm \infty } \left( {y + 2x} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \left( {\frac{1}{{x - 1}}} \right) = 0\) nên TCX: \(y = x - 1\).
Ta có:
\(y' = - 2 - \frac{1}{{{{\left( {x - 1} \right)}^2}}} < 0,\forall x \in D\)
Hàm số nghịch biến trên từng khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\) và không có cực trị.
BBT:
+) Đồ thị:
CHƯƠNG IX. HẠT NHÂN NGUYÊN TỬ
Đề thi học kì 2
CHƯƠNG V. DÒNG ĐIỆN XOAY CHIỀU
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Toán lớp 12
Chương 7: Sắt và một số kim loại quan trọng