Tìm các giới hạn sau :
LG a
LG a
\(\lim {{{n^2} + 4n - 5} \over {3{n^3} + {n^2} + 7}}\)
Phương pháp giải:
Chia cả tử và mẫu của các biểu thức cần tính giới hạn cho lũy thừa bậc cao nhất của n.
Lời giải chi tiết:
\(\eqalign{
& \lim {{{n^2} + 4n - 5} \over {3{n^3} + {n^2} + 7}} \cr &= \lim {{{n^3}\left( {{1 \over n} + {4 \over {{n^2}}} - {5 \over {{n^3}}}} \right)} \over {{n^3}\left( {3 + {1 \over n} + {7 \over {{n^3}}}} \right)}} \cr
& = \lim {{{1 \over n} + {4 \over {{n^2}}} - {5 \over {{n^3}}}} \over {3 + {1 \over n} + {7 \over {{n^3}}}}} = {0 \over 3} = 0 \cr} \)
LG b
LG b
\(\lim {{{n^5} + {n^4} - 3n - 2} \over {4{n^3} + 6{n^2} + 9}}\)
Lời giải chi tiết:
\(\eqalign{
& \lim {{{n^5} + {n^4} - 3n - 2} \over {4{n^3} + 6{n^2} + 9}} \cr &= \lim {n^2}{{{n^3}\left( {1 + {1 \over n} - {3 \over {{n^4}}} - {2 \over {{n^5}}}} \right)} \over {{n^3}\left( {4 + {6 \over n} + {9 \over {{n^3}}}} \right)}} \cr
& = {{\mathop{\rm limn}\nolimits} ^2}{{\left( {1 + {1 \over n} - {3 \over {{n^4}}} - {2 \over {{n^5}}}} \right)} \over {\left( {4 + {6 \over n} + {9 \over {{n^3}}}} \right)}} = + \infty \cr} \)
Vì \(\lim {n^2} = + \infty \) và \(\lim \dfrac{{1 + \frac{1}{n} - \frac{3}{{{n^4}}} - \frac{2}{{{n^5}}}}}{{4 + \frac{6}{n} + \frac{9}{{{n^3}}}}} = \dfrac{1}{4} > 0\).
LG c
LG c
\(\lim {{\sqrt {2{n^4} + 3n - 2} } \over {2{n^2} - n + 3}}\)
Lời giải chi tiết:
\(\eqalign{
& \lim {{\sqrt {2{n^4} + 3n - 2} } \over {2{n^2} - n + 3}} \cr & = \lim \frac{{\sqrt {{n^4}\left( {2 + \frac{3}{{{n^3}}} - \frac{2}{{{n^4}}}} \right)} }}{{{n^2}\left( {1 - \frac{1}{n} + \frac{3}{{{n^2}}}} \right)}}\cr &= \lim {{{n^2}\sqrt {2 + {3 \over {n^3}} - {2 \over {{n^4}}}} } \over {{n^2}\left ({2 - {1 \over n} + {3 \over{ {n^2}}}}\right )}} \cr
& = \lim {{\sqrt {2 + {n \over 3} - {2 \over {{n^2}}}} } \over {2 - {1 \over n} + {3 \over {{n^2}}}}} = {{\sqrt 2 } \over 2} \cr} \)
LG d
LG d
\(\lim {{{3^n} - {{2.5}^n}} \over {7 + {{3.5}^n}}}\)
Phương pháp giải:
Chia cả tử và mẫu cho 5n
Lời giải chi tiết:
Chia cả tử và mẫu cho 5n ta được:
\(\eqalign{
& \lim {{{3^n} - {{2.5}^n}} \over {7 + {{3.5}^n}}} = \lim \frac{{\frac{{{3^n}}}{{{5^n}}} - 2}}{{\frac{7}{{{5^n}}} + 3}}\cr &= \lim {{{{\left( {{3 \over 5}} \right)}^n} - 2} \over {7.{{\left( {{1 \over 5}} \right)}^n} + 3}} = - {2 \over 3} \cr
& \text{vì}\,\,\lim {\left( {{3 \over 5}} \right)^n} = \lim {\left( {{1 \over 5}} \right)^n} = 0 \cr} \)
Review (Units 5-8)
Chương II. Công nghệ giống vật nuôi
CHƯƠNG I. ĐIỆN TÍCH. ĐIỆN TRƯỜNG
Chủ đề 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Chủ đề 2: Chủ nghĩa xã hội từ năm 1917 đến nay
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11