ĐẠI SỐ VÀ GIẢI TÍCH - SBT TOÁN 11 NÂNG CAO

Bài 1.66 trang 19 SBT Đại số và Giải tích 11 Nâng cao

Đề bài

Tìm các nghiệm thuộc khoảng\(\left( {0;2\pi } \right)\) của phương trình

\({{\sqrt {1 + \cos x}  + \sqrt {1 - \cos x} } \over {\cos x}} = 4\sin x\)

Lời giải chi tiết

Điều kiện xác định của phương trình \(\cos x \ne 0.\)

Với điều kiện đó, phương trình đã cho tương đương với phương trình:

\(\sqrt 2 \left( {\left| {\cos {x \over 2}} \right| + \left| {\sin {x \over 2}} \right|} \right) = 2\sin 2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\)

Do \(x = \pi \) không là nghiệm của (1) nên ta chỉ cần xét hai khả năng sau:

1) \(x \in \left( {0;\pi } \right).\) Lúc này \(0 < {x \over 2} < {\pi  \over 2},\) kéo theo \(\cos {x \over 2} > 0\) và  \(\sin {x \over 2} > 0\).

Do đó (1) trở thành

\({1 \over {\sqrt 2 }}\left( {\sin {x \over 2} + \cos {x \over 2}} \right) = \sin 2x \)

\(\Leftrightarrow \sin \left( {{x \over 2} + {\pi \over 4}} \right) = \sin 2x \)

\(\Leftrightarrow \left[ \matrix{
x = {\pi \over 6} + {{4k\pi } \over 3} \hfill \cr 
x = {{3\pi } \over {10}} + {{4l\pi } \over 5} \hfill \cr} \right.\)

Để tìm nghiệm thuộc khoảng \(\left( {0;\pi } \right),\) ta cần tìm k và l nguyên sao cho

\( \bullet \,\,0 < {\pi  \over 6} + k{{4\pi } \over 3} < \pi  \) \(\Leftrightarrow  - {1 \over 8} < k < {5 \over 8} \Leftrightarrow k = 0.\) Ta nhận \(x = {\pi  \over 6}\)

\( \bullet \,\,0 < {{3\pi } \over {10}} + l{{4\pi } \over 5} < \pi \) \( \Leftrightarrow  - {3 \over 8} < l < {7 \over 8} \Leftrightarrow l = 0.\) Ta nhận \(x = {{3\pi } \over {10}}\)

2) \(x \in \left( {\pi ;2\pi } \right).\) Lúc này \({\pi  \over 2} < {x \over 2} < \pi ,\) kéo theo \(\cos {x \over 2} < 0\) và  \(\sin {x \over 2} > 0\). Do đó (1) trở thành

\({1 \over {\sqrt 2 }}\left( {\sin {x \over 2} - \cos {x \over 2}} \right) = \sin 2x\)

\(\Leftrightarrow \sin \left( {{x \over 2} - {\pi \over 4}} \right) = \sin 2x\)

\(\Leftrightarrow \left[ \matrix{
x = - {\pi \over 6} + {{4k\pi } \over 3} \hfill \cr 
x = {\pi \over 2} + l{{4\pi } \over 5} \hfill \cr} \right.\)

Tương tự trên, ta có

\( \bullet \,\,\pi  <  - {\pi  \over 6} + k{{4\pi } \over 3} < 2\pi \) \( \Leftrightarrow {7 \over 8} < k < {{13} \over 8} \Leftrightarrow k = 1.\)

Ta nhận được \(x =  - {\pi  \over 6} + {{4\pi } \over 3} = {{7\pi } \over 6}\)

\( \bullet \,\,\pi  < {\pi  \over 2} + l{{4\pi } \over 5} < 2\pi  \) \(\Leftrightarrow {5 \over 8} < l < {{15} \over 8} \Leftrightarrow l = 1.\)

Ta nhận được \(x = {\pi  \over 2} + {{4\pi } \over 5} = {{13\pi } \over {10}}\)

Kết luận: Trong khoảng \(\left( {0;2\pi } \right),\) phương trình đã cho có 4 nghiệm là \(x = {\pi  \over 6},x = {{3\pi } \over {10}},x = {7 \pi \over 6}\) và \(x = {{13\pi } \over {10}}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved